Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Pionic dark matter
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

A flavoured dark sector

10 August 2018

Sophie Renner & Pedro Schwaller

A theory of dark pions

21 January 2022

Hsin-Chia Cheng, Lingfeng Li & Ennio Salvioni

Pseudo-Goldstone dark matter: gravitational waves and direct-detection blind spots

13 October 2020

Tommi Alanne, Nico Benincasa, … Kimmo Tuominen

Light and darkness: consistently coupling dark matter to photons via effective operators

09 March 2021

Chiara Arina, Andrew Cheek, … Luca Pagani

Dark matter from strong dynamics: the minimal theory of dark baryons

19 December 2018

Anthony Francis, Renwick J. Hudspith, … Sean Tulin

Linear sigma dark matter

06 September 2022

Dan Kondo, Robert McGehee, … Hitoshi Murayama

Dark matter spectra from the electroweak to the Planck scale

18 June 2021

Christian W. Bauer, Nicholas L. Rodd & Bryan R. Webber

Detecting dark matter with Aharonov-Bohm

23 December 2019

John Terning & Christopher B. Verhaaren

Perturbative unitarity of strongly interacting massive particle models

22 February 2023

Ayuki Kamada, Shin Kobayashi & Takumi Kuwahara

Download PDF
  • Open Access
  • Published: 26 February 2014

Pionic dark matter

  • Subhaditya Bhattacharya1,
  • Blaženka Melić1,2 &
  • José Wudka1 

Journal of High Energy Physics volume 2014, Article number: 115 (2014) Cite this article

  • 348 Accesses

  • 25 Citations

  • 1 Altmetric

  • Metrics details

Abstract

We study a phenomenological model where the lightest dark matter (DM) particles are the pseudo-Goldstone excitations associated with a spontaneously broken symmetry, and transforming linearly with respect to an unbroken group \( {{\mathcal{H}}_{\mathrm{DM}}} \). For definiteness we take \( {{\mathcal{H}}_{\mathrm{DM}}} \) = SU(N) and assume the Goldstone particles are bosons; in parallel with QCD, we refer to these particles as dark-matter pions. This scenario is in contrast to the common assumption that DM fields transform linearly under the full symmetry of the model. We illustrate the formalism by treating in detail the case of \( {{\mathcal{H}}_{\mathrm{DM}}} \) = SU(2), in particular we calculate all the interactions relevant for the Boltzmann equations, which we solve numerically; we also derive approximate analytic solutions and show their consistency with the numerical results. We then compare the results with the constraints derived from the cold DM and direct detection experiments and derive the corresponding restrictions on the model parameters. We also briefly comment on constraints from indirect detection of DM.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. J.H. Oort, The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems, Bull. Astron. Inst. Netherlands 6 (1932) 249.

    ADS  Google Scholar 

  2. F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln, Helv. Phys. Acta 6 (1933) 110 [INSPIRE].

    ADS  Google Scholar 

  3. F. Zwicky, On the Masses of Nebulae and of Clusters of Nebulae, Astrophys. J. 86 (1937) 217 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  4. P.J.E. Peebles, Principles of Physical Cosmology, Princeton University Press, (1993).

  5. A. Klypin, J. Holtzman, J. Primack and E. Regos, Structure formation with cold plus hot dark matter, Astrophys. J. 416 (1993) 1 [astro-ph/9305011] [INSPIRE].

    Article  ADS  Google Scholar 

  6. N. Jarosik et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors and Basic Results, Astrophys. J. Suppl. 192 (2011) 14 [arXiv:1001.4744] [INSPIRE].

    Article  ADS  Google Scholar 

  7. Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].

  8. H. Goldberg, Constraint on the Photino Mass from Cosmology, Phys. Rev. Lett. 50 (1983) 1419 [Erratum ibid. 103 (2009) 099905] [INSPIRE].

  9. J.R. Ellis, J. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric Relics from the Big Bang, Nucl. Phys. B 238 (1984) 453 [INSPIRE].

    Article  ADS  Google Scholar 

  10. H.-C. Cheng, K.T. Matchev and M. Schmaltz, Radiative corrections to Kaluza-Klein masses, Phys. Rev. D 66 (2002) 036005 [hep-ph/0204342] [INSPIRE].

    ADS  Google Scholar 

  11. G. Servant and T.M. Tait, Elastic scattering and direct detection of Kaluza-Klein dark matter, New J. Phys. 4 (2002) 99 [hep-ph/0209262] [INSPIRE].

    Article  ADS  Google Scholar 

  12. K. Agashe and G. Servant, Warped unification, proton stability and dark matter, Phys. Rev. Lett. 93 (2004) 231805 [hep-ph/0403143] [INSPIRE].

    Article  ADS  Google Scholar 

  13. J. Hubisz and P. Meade, Phenomenology of the littlest Higgs with T-parity, Phys. Rev. D 71 (2005) 035016 [hep-ph/0411264] [INSPIRE].

    ADS  Google Scholar 

  14. E. Ma, Variants of the Dark Left-Right Gauge Model: Neutrinos and Scotinos, Phys. Rev. D 79 (2009) 117701 [arXiv:0904.1378] [INSPIRE].

    ADS  Google Scholar 

  15. F. Petriello and K.M. Zurek, DAMA and WIMP dark matter, JHEP 09 (2008) 047 [arXiv:0806.3989] [INSPIRE].

    Article  ADS  Google Scholar 

  16. K.M. Zurek, Multi-Component Dark Matter, Phys. Rev. D 79 (2009) 115002 [arXiv:0811.4429] [INSPIRE].

    ADS  Google Scholar 

  17. D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric Dark Matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].

    ADS  Google Scholar 

  18. G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. Cvetič, D.A. Demir, J. Espinosa, L. Everett and P. Langacker, Electroweak breaking and the mu problem in supergravity models with an additional U(1), Phys. Rev. D 56 (1997) 2861 [Erratum ibid. D 58 (1998) 119905] [hep-ph/9703317] [INSPIRE].

  20. V. Barger, P. Langacker, I. Lewis, M. McCaskey, G. Shaughnessy and B. Yencho, Recoil Detection of the Lightest Neutralino in MSSM Singlet Extensions, Phys. Rev. D 75 (2007) 115002 [hep-ph/0702036] [INSPIRE].

    ADS  Google Scholar 

  21. S. Bhattacharya, J.L. Diaz-Cruz, E. Ma and D. Wegman, Dark Vector-Gauge-Boson Model, Phys. Rev. D 85 (2012) 055008 [arXiv:1107.2093] [INSPIRE].

    ADS  Google Scholar 

  22. J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].

    ADS  Google Scholar 

  23. R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An Alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].

    ADS  Google Scholar 

  24. S. Weinberg, The Quantum Theory of Fields, Cambridge University Press, (2005).

  25. M.L. Graesser, I.M. Shoemaker and L. Vecchi, Asymmetric WIMP dark matter, JHEP 10 (2011) 110 [arXiv:1103.2771] [INSPIRE].

    Article  ADS  Google Scholar 

  26. R.H. Brandenberger, N. Kaiser, D.N. Schramm and N. Turok, Galaxy and Structure Formation with Hot Dark Matter and Cosmic Strings, Phys. Rev. Lett. 59 (1987) 2371 [INSPIRE].

    Article  ADS  Google Scholar 

  27. M. Davis, F. Summers and D. Schlegel, Large scale structure in a universe with mixed hot and cold dark matter, Nature 359 (1992) 393 [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Klypin, J. Holtzman, J. Primack and E. Regos, Structure formation with cold plus hot dark matter, Astrophys. J. 416 (1993) 1 [astro-ph/9305011] [INSPIRE].

    Article  ADS  Google Scholar 

  29. T. Hur, D.-W. Jung, P. Ko and J.Y. Lee, Electroweak symmetry breaking and cold dark matter from strongly interacting hidden sector, Phys. Lett. B 696 (2011) 262 [arXiv:0709.1218] [INSPIRE].

    Article  ADS  Google Scholar 

  30. T. Hur and P. Ko, Scale invariant extension of the standard model with strongly interacting hidden sector, Phys. Rev. Lett. 106 (2011) 141802 [arXiv:1103.2571] [INSPIRE].

    Article  ADS  Google Scholar 

  31. Y. Bai and R.J. Hill, Weakly Interacting Stable Pions, Phys. Rev. D 82 (2010) 111701 [arXiv:1005.0008] [INSPIRE].

    ADS  Google Scholar 

  32. Y. Bai and P. Schwaller, The Scale of Dark QCD, arXiv:1306.4676 [INSPIRE].

  33. B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the Minimal Composite Higgs Model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].

    Article  ADS  Google Scholar 

  34. M. Frigerio, A. Pomarol, F. Riva and A. Urbano, Composite Scalar Dark Matter, JHEP 07 (2012) 015 [arXiv:1204.2808] [INSPIRE].

    Article  ADS  Google Scholar 

  35. S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].

    Article  ADS  Google Scholar 

  36. C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247 [INSPIRE].

    Article  ADS  Google Scholar 

  37. E. Farhi and L. Susskind, Technicolor, Phys. Rept. 74 (1981) 277 [INSPIRE].

    Article  ADS  Google Scholar 

  38. G.’t Hooft, How Instantons Solve the U(1) Problem, Phys. Rept. 142 (1986) 357 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. J. Gasser and H. Leutwyler, Quark Masses, Phys. Rept. 87 (1982) 77 [INSPIRE].

    Article  ADS  Google Scholar 

  41. H. Georgi, Weak Interactions and Modern Particle Theory, Dover Books, (2009).

  42. T. Skyrme, A Nonlinear field theory, Proc. Roy. Soc. Lond. A 260 (1961) 127 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. G.S. Adkins, C.R. Nappi and E. Witten, Static Properties of Nucleons in the Skyrme Model, Nucl. Phys. B 228 (1983) 552 [INSPIRE].

    Article  ADS  Google Scholar 

  44. S. Saito, A Review On The Skyrme Model, in proceedings of Meeting on Few-body Problems In High and Medium Energy Physics, Tsukuba, Japan, 3-5 October 1985, pg. 75-84, INSPIRE.

  45. M. Archidiacono, S. Hannestad, A. Mirizzi, G. Raffelt and Y.Y. Wong, Axion hot dark matter bounds after Planck, JCAP 10 (2013) 020 [arXiv:1307.0615] [INSPIRE].

    Article  ADS  Google Scholar 

  46. R. Gilmore, Lie Groups, Physics, and Geometry: An Introduction for Physicists, Engineers and Chemists, Cambridge University Press, (2008).

  47. H. Georgi, Lie Algebras In Particle Physics: from Isospin To Unified Theories (Frontiers in Physics), Westview Press, (1999).

  48. J. March-Russell, S.M. West, D. Cumberbatch and D. Hooper, Heavy Dark Matter Through the Higgs Portal, JHEP 07 (2008) 058 [arXiv:0801.3440] [INSPIRE].

    Article  ADS  Google Scholar 

  49. A. Drozd, B. Grzadkowski and J. Wudka, Multi-Scalar-Singlet Extension of the Standard Model - the Case for Dark Matter and an Invisible Higgs Boson, JHEP 04 (2012) 006 [arXiv:1112.2582] [INSPIRE].

    Article  ADS  Google Scholar 

  50. J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. E. Witten, Global Aspects of Current Algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  52. R. Jackiw, Field Theoretic Investigations In Current Algebra, in Current Algebra and Anomalies, S. Treiman ed., (1986) pg. 81-210, INSPIRE.

  53. A. Manohar and H. Georgi, Chiral Quarks and the Nonrelativistic Quark Model, Nucl. Phys. B 234 (1984) 189 [INSPIRE].

    Article  ADS  Google Scholar 

  54. R.S. Chivukula, M.J. Dugan and M. Golden, Electroweak corrections in technicolor reconsidered, Phys. Lett. B 292 (1992) 435 [hep-ph/9207249] [INSPIRE].

    Article  ADS  Google Scholar 

  55. H. Georgi, Generalized dimensional analysis, Phys. Lett. B 298 (1993) 187 [hep-ph/9207278] [INSPIRE].

    Article  ADS  Google Scholar 

  56. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  57. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  58. R. Bernabei et al., DAMA/LIBRA results and perspectives, arXiv:1301.6243 [INSPIRE].

  59. DAMA, LIBRA collaborations, R. Bernabei et al., New results from DAMA/LIBRA, Eur. Phys. J. C 67 (2010) 39 [arXiv:1002.1028] [INSPIRE].

    Article  ADS  Google Scholar 

  60. CDMS collaboration, Z. Ahmed et al., Search for Weakly Interacting Massive Particles with the First Five-Tower Data from the Cryogenic Dark Matter Search at the Soudan Underground Laboratory, Phys. Rev. Lett. 102 (2009) 011301 [arXiv:0802.3530] [INSPIRE].

    Article  ADS  Google Scholar 

  61. CDMS-II collaboration, Z. Ahmed et al., Dark Matter Search Results from the CDMS II Experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [INSPIRE].

    Article  ADS  Google Scholar 

  62. LUX collaboration, D. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, arXiv:1310.8214 [INSPIRE].

  63. XENON100 collaboration, E. Aprile et al., Implications on Inelastic Dark Matter from 100 Live Days of XENON100 Data, Phys. Rev. D 84 (2011) 061101 [arXiv:1104.3121] [INSPIRE].

    ADS  Google Scholar 

  64. XENON100 collaboration, E. Aprile et al., Dark Matter Results from 100 Live Days of XENON100 Data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].

    Article  ADS  Google Scholar 

  65. E. W. Kolb and M. S. Turner, The Early universe, Westview Press, (1994).

  66. S. Dodelson, Modern cosmology, Academic Press, Amsterdam, Netherlands (2003).

    Google Scholar 

  67. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, John Wiley & Sons Inc., (1972).

  68. M. Frigerio, T. Hambye and E. Masso, Sub-GeV dark matter as pseudo-Goldstone from the seesaw scale, Phys. Rev. X 1 (2011) 021026 [arXiv:1107.4564] [INSPIRE].

    Google Scholar 

  69. M. Laine and Y. Schröder, Quark mass thresholds in QCD thermodynamics, Phys. Rev. D 73 (2006) 085009 [hep-ph/0603048] [INSPIRE].

    ADS  Google Scholar 

  70. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  71. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  72. B. Grzadkowski and J. Wudka, Pragmatic approach to the little hierarchy problem: the case for Dark Matter and neutrino physics, Phys. Rev. Lett. 103 (2009) 091802 [arXiv:0902.0628] [INSPIRE].

    Article  ADS  Google Scholar 

  73. P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing Energy Signatures of Dark Matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].

    ADS  Google Scholar 

  74. A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].

    Article  ADS  Google Scholar 

  75. L. Bergstrom and H. Snellman, Observable Monochromatic Photons From Cosmic Photino Annihilation, Phys. Rev. D 37 (1988) 3737 [INSPIRE].

    ADS  Google Scholar 

  76. L. Bergstrom, P. Ullio and J.H. Buckley, Observability of gamma-rays from dark matter neutralino annihilations in the Milky Way halo, Astropart. Phys. 9 (1998) 137 [astro-ph/9712318] [INSPIRE].

    Article  ADS  Google Scholar 

  77. LAT collaboration, W. Atwood et al., The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission, Astrophys. J. 697 (2009) 1071 [arXiv:0902.1089] [INSPIRE].

    Article  ADS  Google Scholar 

  78. T. Bringmann, X. Huang, A. Ibarra, S. Vogl and C. Weniger, Fermi LAT Search for Internal Bremsstrahlung Signatures from Dark Matter Annihilation, JCAP 07 (2012) 054 [arXiv:1203.1312] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics & Astronomy, University of California Riverside, Riverside, CA, 92521-0413, U.S.A.

    Subhaditya Bhattacharya, Blaženka Melić & José Wudka

  2. Rudjer Bošković Institute, Theoretical Physics Division, P.O.Box 180, HR-10002, Zagreb, Croatia

    Blaženka Melić

Authors
  1. Subhaditya Bhattacharya
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Blaženka Melić
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. José Wudka
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Subhaditya Bhattacharya.

Additional information

ArXiv ePrint: 1307.2647

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Bhattacharya, S., Melić, B. & Wudka, J. Pionic dark matter. J. High Energ. Phys. 2014, 115 (2014). https://doi.org/10.1007/JHEP02(2014)115

Download citation

  • Received: 10 August 2013

  • Revised: 06 January 2014

  • Accepted: 22 January 2014

  • Published: 26 February 2014

  • DOI: https://doi.org/10.1007/JHEP02(2014)115

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.