Skip to main content
Log in

Multi-scalar-singlet extension of the standard model — The case for dark matter and an invisible Higgs boson

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

An Erratum to this article was published on 24 November 2014

Abstract

We consider a simple extension of the Standard Model by the addition of N real scalar gauge singlets \( \overrightarrow \varphi \) that are candidates for Dark Matter. By collecting theoretical and experimental constraints we determine the space of allowed parameters of the model. The possibility of ameliorating the little hierarchy problem within the multisinglet model is discussed. The Spergel-Steinhardt solution of the Dark Matter density cusp problem is revisited. It is shown that fitting the recent CRESST-II data for Dark Matter nucleus scattering implies that the standard Higgs boson decays predominantly into pairs of Dark Matter Scalars. In that case discovery of the Higgs boson at LHC and Tevatron is impossible. The most likely mass of the dark scalars is in the range 15 GeV ≾ m φ ≾ 50 GeV with BR(\( h \to \overrightarrow \varphi \overrightarrow \varphi \)) up to 96%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Jarosik et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: sky maps, systematic errors and basic results, Astrophys. J. Suppl. 192 (2011) 14 [arXiv:1001.4744] [INSPIRE].

    Article  ADS  Google Scholar 

  2. M. Veltman and F. Yndurain, Radiative corrections to WW scattering, Nucl. Phys. B 325 (1989) 1 [INSPIRE].

    ADS  Google Scholar 

  3. V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].

    ADS  Google Scholar 

  5. C. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].

    Article  ADS  Google Scholar 

  6. M. Bento, O. Bertolami and R. Rosenfeld, Cosmological constraints on an invisibly decaying Higgs boson, Phys. Lett. B 518 (2001) 276 [hep-ph/0103340] [INSPIRE].

    ADS  Google Scholar 

  7. H. Davoudiasl, R. Kitano, T. Li and H. Murayama, The new minimal standard model, Phys. Lett. B 609 (2005) 117 [hep-ph/0405097] [INSPIRE].

    ADS  Google Scholar 

  8. J. van der Bij, The minimal non-minimal standard model, Phys. Lett. B 636 (2006) 56 [hep-ph/0603082] [INSPIRE].

    ADS  Google Scholar 

  9. X.-G. He, T. Li, X.-Q. Li, J. Tandean and H.-C. Tsai, The simplest dark-matter model, CDMS II results and Higgs detection at LHC, Phys. Lett. B 688 (2010) 332 [arXiv:0912.4722] [INSPIRE].

    ADS  Google Scholar 

  10. W.-L. Guo and Y.-L. Wu, The Real singlet scalar dark matter model, JHEP 10 (2010) 083 [arXiv:1006.2518] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. Y. Cai, X.-G. He and B. Ren, Low mass dark matter and invisible Higgs width in darkon models, Phys. Rev. D 83 (2011) 083524 [arXiv:1102.1522] [INSPIRE].

    ADS  Google Scholar 

  12. L.J. Hall and Y. Nomura, A finely-predicted Higgs boson mass from a finely-tuned weak scale, JHEP 03 (2010) 076 [arXiv:0910.2235] [INSPIRE].

    Article  ADS  Google Scholar 

  13. A. Bandyopadhyay, S. Chakraborty, A. Ghosal and D. Majumdar, Constraining scalar singlet dark matter with CDMS, XENON and DAMA and prediction for direct detection rates, JHEP 11 (2010) 065 [arXiv:1003.0809] [INSPIRE].

    Article  ADS  Google Scholar 

  14. C.E. Yaguna, The singlet scalar as FIMP dark matter, JHEP 08 (2011) 060 [arXiv:1105.1654] [INSPIRE].

    Article  ADS  Google Scholar 

  15. Y. Mambrini, Higgs searches and singlet scalar dark matter: combined constraints from XENON 100 and the LHC, Phys. Rev. D 84 (2011) 115017 [arXiv:1108.0671] [INSPIRE].

    ADS  Google Scholar 

  16. M. Pospelov and A. Ritz, Higgs decays to dark matter: beyond the minimal model, Phys. Rev. D 84 (2011) 113001 [arXiv:1109.4872] [INSPIRE].

    ADS  Google Scholar 

  17. A. Abada, D. Ghaffor and S. Nasri, A two-singlet model for light cold dark matter, Phys. Rev. D 83 (2011) 095021 [arXiv:1101.0365] [INSPIRE].

    ADS  Google Scholar 

  18. Y. Mambrini, Invisible Higgs and scalar dark matter, arXiv:1112.0011 [INSPIRE].

  19. A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].

    ADS  Google Scholar 

  20. B. Grzadkowski and J. Wudka, Pragmatic approach to the little hierarchy problem: the case for dark matter and neutrino physics, Phys. Rev. Lett. 103 (2009) 091802 [arXiv:0902.0628] [INSPIRE].

    Article  ADS  Google Scholar 

  21. B. Grzadkowski and J. Wudka, Naive solution of the little hierarchy problem and its physical consequences, Acta Phys. Polon. B 40 (2009) 3007 [arXiv:0910.4829] [INSPIRE].

    ADS  Google Scholar 

  22. B. Grzadkowski and J. Wudka, The uses of singlets, J. Phys. Conf. Ser. 259 (2010) 012095 [INSPIRE].

    Article  ADS  Google Scholar 

  23. A. Kundu and S. Raychaudhuri, Taming the scalar mass problem with a singlet Higgs boson, Phys. Rev. D 53 (1996) 4042 [hep-ph/9410291] [INSPIRE].

    ADS  Google Scholar 

  24. C.F. Kolda and H. Murayama, The Higgs mass and new physics scales in the minimal standard model, JHEP 07 (2000) 035 [hep-ph/0003170] [INSPIRE].

    Article  ADS  Google Scholar 

  25. J. Casas, J. Espinosa and I. Hidalgo, Implications for new physics from fine-tuning arguments. 1. Application to SUSY and seesaw cases, JHEP 11 (2004) 057 [hep-ph/0410298] [INSPIRE].

    Article  ADS  Google Scholar 

  26. G. Angloher et al., Results from 730 kg days of the CRESST-II dark matter search, arXiv:1109.0702 [INSPIRE].

  27. B.W. Lee, C. Quigg and H. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].

    ADS  Google Scholar 

  28. G. Cynolter, E. Lendvai and G. Pocsik, Note on unitarity constraints in a model for a singlet scalar dark matter candidate, Acta Phys. Polon. B 36 (2005) 827 [hep-ph/0410102] [INSPIRE].

    ADS  Google Scholar 

  29. M. Gonderinger, Y. Li, H. Patel and M.J. Ramsey-Musolf, Vacuum stability, perturbativity and scalar singlet dark matter, JHEP 01 (2010) 053 [arXiv:0910.3167] [INSPIRE].

    Article  ADS  Google Scholar 

  30. B. Grzadkowski and M. Lindner, Stability of triviality mass bounds in the standard model, Phys. Lett. B 178 (1986) 81.

    ADS  Google Scholar 

  31. M. Veltman, The infrared-ultraviolet connection, Acta Phys. Polon. B 12 (1981) 437 [INSPIRE].

    Google Scholar 

  32. M. Einhorn and D. Jones, The effective potential and quadratic divergences, Phys. Rev. D 46 (1992) 5206 [INSPIRE].

    ADS  Google Scholar 

  33. A. Drozd, RGE and the fine-tuning problem, arXiv:1202.0195 [INSPIRE].

  34. ATLAS collaboration, Combined standard model higgs boson searches with up to 2.3 fb −1 of pp collisions at \( \sqrt {s} = 7\,TeV \) at the LHC, ATLAS-CONF-2011-157 (2011).

  35. Particle Data Goup collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  36. E. Kolb and M. Turner, The early universe, Westview Press, U.S.A. (1994).

    Google Scholar 

  37. P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].

    Article  ADS  Google Scholar 

  38. G. Bertone, Particle dark matter: observations, models and searches, Cambridge University press, Cambridge U.K. (2010).

    Book  MATH  Google Scholar 

  39. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  40. J. McDonald, Thermally generated gauge singlet scalars as selfinteracting dark matter, Phys. Rev. Lett. 88 (2002) 091304 [hep-ph/0106249] [INSPIRE].

    Article  ADS  Google Scholar 

  41. XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].

    Article  ADS  Google Scholar 

  42. T. Binoth and J. van der Bij, Influence of strongly coupled, hidden scalars on Higgs signals, Z. Phys. C 75 (1997) 17 [hep-ph/9608245] [INSPIRE].

    Google Scholar 

  43. R. Akhoury, J. van der Bij and H. Wang, Interplay between perturbative and nonperturbative effects in the stealthy Higgs model, Eur. Phys. J. C 20 (2001) 497 [hep-ph/0010187] [INSPIRE].

    Article  ADS  Google Scholar 

  44. S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada, Can WIMP dark matter overcome the nightmare scenario?, Phys. Rev. D 82 (2010) 055026 [arXiv:1005.5651] [INSPIRE].

    ADS  Google Scholar 

  45. S. Kanemura, S. Matsumoto, T. Nabeshima and H. Taniguchi, Testing Higgs portal dark matter via Z fusion at a linear collider, Phys. Lett. B 701 (2011) 591 [arXiv:1102.5147] [INSPIRE].

    ADS  Google Scholar 

  46. ATLAS collaboration, Combination of Higgs boson searches with up to 4.9 fb −1 of pp collisions data taken at a center-of-mass energy of 7 TeV with the ATLAS experiment at the LHC, ATLAS-CONF-2011-163 (2011).

  47. CMS collaboration, Combination of SM Higgs searches, PAS-HIG-11-032 (2011).

  48. J.F. Navarro, C.S. Frenk and S.D. White, A universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [INSPIRE].

    Article  ADS  Google Scholar 

  49. A.A. Klypin, A.V. Kravtsov, O. Valenzuela and F. Prada, Where are the missing galactic satellites?, Astrophys. J. 522 (1999) 82 [astro-ph/9901240] [INSPIRE].

    Article  ADS  Google Scholar 

  50. D.N. Spergel and P.J. Steinhardt, Observational evidence for selfinteracting cold dark matter, Phys. Rev. Lett. 84 (2000) 3760 [astro-ph/9909386] [INSPIRE].

    Article  ADS  Google Scholar 

  51. B.D. Wandelt et al., Selfinteracting dark matter, astro-ph/0006344 [INSPIRE].

  52. D.E. Holz and A. Zee, Collisional dark matter and scalar phantoms, Phys. Lett. B 517 (2001) 239 [hep-ph/0105284] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Drozd.

Additional information

ArXiv ePrint: 1112.2582

An erratum to this article is available at http://dx.doi.org/10.1007/JHEP11(2014)130.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drozd, A., Grzadkowski, B. & Wudka, J. Multi-scalar-singlet extension of the standard model — The case for dark matter and an invisible Higgs boson. J. High Energ. Phys. 2012, 6 (2012). https://doi.org/10.1007/JHEP04(2012)006

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2012)006

Keywords

Navigation