Abstract
We use a holographic theory to model and study the competition of four phases: an antiferromagnetic phase, a superconducting phase, a metallic phase and a striped phase, using as control parameters temperature and a doping-like parameter. We analyse the various instabilities and determine the possible phases. One class of phase diagrams, that we analyse in detail, is similar to that of high-temperature superconductors as well as other strange metal materials.
References
T. Moriya and K. Ueda, Spin fluctuations and high temperature superconductivity, Adv. Phys. 49 (2000) 555.
P.W. Anderson, The resonating valence bond state in La 2 CuO 4 and superconductivity, Science 235 (1987) 1196 [INSPIRE].
Z.Y. Weng, Phase string theory for doped antiferromagnets, Int. J. Mod. Phys. B 21 (2007) 773 [arXiv:0704.2875].
E. Demler, W. Hanker and S.C. Zhang, SO(5) theory of antiferromagnetism and superconductivity, Rev. Mod. Phys. 76 (2004) 909 [cond-mat/0405038].
J. Zaanen, A modern, but way too short history of the theory of superconductivity at a high temperature, arXiv:1012.5461 [INSPIRE].
B. Keimer, S.A. Kivelson, M.R. Norman, S. Uchida and J. Zaanen, From quantum matter to high-temperature superconductivity in copper oxides, Nature 518 (2015) 179 [arXiv:1409.4673].
M.R. Norman, The challenge of unconventional superconductivity, Science 332 (2011) 196 [arXiv:1106.1213].
J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].
S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].
S.S. Pal, Model building in AdS/CMT: DC conductivity and Hall angle, Phys. Rev. D 84 (2011) 126009 [arXiv:1011.3117] [INSPIRE].
B.S. Kim, E. Kiritsis and C. Panagopoulos, Holographic quantum criticality and strange metal transport, New J. Phys. 14 (2012) 043045 [arXiv:1012.3464] [INSPIRE].
M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [INSPIRE].
H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].
T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].
S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].
S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].
N. Iqbal, H. Liu, M. Mezei and Q. Si, Quantum phase transitions in holographic models of magnetism and superconductors, Phys. Rev. D 82 (2010) 045002 [arXiv:1003.0010] [INSPIRE].
S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].
S.A. Hartnoll, Horizons, holography and condensed matter, in Black holes in higher dimensions, G.T. Horowitz ed., Cambridge University Press, Cambridge U.K. (2012) [arXiv:1106.4324] [INSPIRE].
S. Sachdev, What can gauge-gravity duality teach us about condensed matter physics?, Ann. Rev. Cond. Mat. Phys. 3 (2012) 9 [arXiv:1108.1197] [INSPIRE].
A.G. Green, An introduction to gauge gravity duality and its application in condensed matter, Contemp. Phys. 54 (2013) 33 [arXiv:1304.5908] [INSPIRE].
J. Zaanen, Y. Liu, Y.W. Sun and K. Schalm, Holographic duality in condensed matter physics, Cambridge University Press, Cambridge U.K. (2015), http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=1107080088.
J. Zaanen and O. Gunnarsson, Charged magnetic domain lines and the magnetism of high-T c oxides, Phys. Rev. B 40 (1989) 7391.
K. Machida, Magnetism in La 2 CuO 4 based compounds, Physica C 158 (1989) 192.
E. Berg, E. Fradkin, S.A. Kivelson and J.M. Tranquada, Striped superconductors: how spin, charge and superconducting orders intertwine in the cuprates, New J. Phys. 11 (2009) 115004.
M. Vojta, Lattice symmetry breaking in cuprate superconductor: stripes, nematics and superconductivity, Adv. Phys. 58 (2009) 699 [arXiv:0901.3145].
R.-G. Cai, L. Li, L.-F. Li and R.-Q. Yang, Introduction to holographic superconductor models, Sci. China Phys. Mech. Astron. 58 (2015) 060401 [arXiv:1502.00437] [INSPIRE].
C. Charmousis, B. Goutéraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].
B. Goutéraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].
Y.I. Shin, C.H. Schunck, A. Schirotzek and W. Ketterle, Phase diagram of a two-component Fermi gas with resonant interactions, Nature 451 (2008) 689 [INSPIRE].
L.-y. He, M. Jin and P.-f. Zhuang, Pion superfluidity and meson properties at finite isospin density, Phys. Rev. D 71 (2005) 116001 [hep-ph/0503272] [INSPIRE].
J. Erdmenger, V. Grass, P. Kerner and T.H. Ngo, Holographic superfluidity in imbalanced mixtures, JHEP 08 (2011) 037 [arXiv:1103.4145] [INSPIRE].
F. Bigazzi, A.L. Cotrone, D. Musso, N.P. Fokeeva and D. Seminara, Unbalanced holographic superconductors and spintronics, JHEP 02 (2012) 078 [arXiv:1111.6601] [INSPIRE].
D. Musso, Competition/enhancement of two probe order parameters in the unbalanced holographic superconductor, JHEP 06 (2013) 083 [arXiv:1302.7205] [INSPIRE].
A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli and D. Musso, Coexistence of two vector order parameters: a holographic model for ferromagnetic superconductivity, JHEP 01 (2014) 054 [arXiv:1309.5093] [INSPIRE].
S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [INSPIRE].
A. Donos and J.P. Gauntlett, Holographic helical superconductors, JHEP 12 (2011) 091 [arXiv:1109.3866] [INSPIRE].
F. Aprile, D. Rodriguez-Gomez and J.G. Russo, p-wave holographic superconductors and five-dimensional gauged supergravity, JHEP 01 (2011) 056 [arXiv:1011.2172] [INSPIRE].
R.-G. Cai, S. He, L. Li and L.-F. Li, A holographic study on vector condensate induced by a magnetic field, JHEP 12 (2013) 036 [arXiv:1309.2098] [INSPIRE].
J.-W. Chen, Y.-J. Kao, D. Maity, W.-Y. Wen and C.-P. Yeh, Towards a holographic model of D-wave superconductors, Phys. Rev. D 81 (2010) 106008 [arXiv:1003.2991] [INSPIRE].
F. Benini, C.P. Herzog, R. Rahman and A. Yarom, Gauge gravity duality for d-wave superconductors: prospects and challenges, JHEP 11 (2010) 137 [arXiv:1007.1981] [INSPIRE].
C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].
G.T. Horowitz, Introduction to holographic superconductors, Lect. Notes Phys. 828 (2011) 313 [arXiv:1002.1722] [INSPIRE].
D. Musso, Introductory notes on holographic superconductors, PoS(Modave 2013)004 [arXiv:1401.1504] [INSPIRE].
B. Goutéraux and E. Kiritsis, Quantum critical lines in holographic phases with (un)broken symmetry, JHEP 04 (2013) 053 [arXiv:1212.2625] [INSPIRE].
S. Franco, A. Garcia-Garcia and D. Rodriguez-Gomez, A general class of holographic superconductors, JHEP 04 (2010) 092 [arXiv:0906.1214] [INSPIRE].
F. Aprile and J.G. Russo, Models of holographic superconductivity, Phys. Rev. D 81 (2010) 026009 [arXiv:0912.0480] [INSPIRE].
Y. Peng, Q. Pan and B. Wang, Various types of phase transitions in the AdS soliton background, Phys. Lett. B 699 (2011) 383 [arXiv:1104.2478] [INSPIRE].
R.-G. Cai, S. He, L. Li and L.-F. Li, Entanglement entropy and Wilson loop in Stückelberg holographic insulator/superconductor model, JHEP 10 (2012) 107 [arXiv:1209.1019] [INSPIRE].
R.-G. Cai and R.-Q. Yang, Holographic model for the paramagnetism/antiferromagnetism phase transition, Phys. Rev. D 91 (2015) 086001 [arXiv:1404.7737] [INSPIRE].
R.-G. Cai, R.-Q. Yang and F.V. Kusmartsev, Holographic model for antiferromagnetic quantum phase transition induced by magnetic field, Phys. Rev. D 92 (2015) 086001 [arXiv:1501.04481] [INSPIRE].
S.K. Domokos and J.A. Harvey, Baryon number-induced Chern-Simons couplings of vector and axial-vector mesons in holographic QCD, Phys. Rev. Lett. 99 (2007) 141602 [arXiv:0704.1604] [INSPIRE].
S. Nakamura, H. Ooguri and C.-S. Park, Gravity dual of spatially modulated phase, Phys. Rev. D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].
H. Ooguri and C.-S. Park, Spatially modulated phase in holographic quark-gluon plasma, Phys. Rev. Lett. 106 (2011) 061601 [arXiv:1011.4144] [INSPIRE].
S. Takeuchi, Modulated instability in five-dimensional U(1) charged AdS black hole with R 2 -term, JHEP 01 (2012) 160 [arXiv:1108.2064] [INSPIRE].
A. Donos and J.P. Gauntlett, Helical superconducting black holes, Phys. Rev. Lett. 108 (2012) 211601 [arXiv:1203.0533] [INSPIRE].
A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP 08 (2011) 140 [arXiv:1106.2004] [INSPIRE].
A. Donos, J.P. Gauntlett and C. Pantelidou, Spatially modulated instabilities of magnetic black branes, JHEP 01 (2012) 061 [arXiv:1109.0471] [INSPIRE].
O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Striped instability of a holographic Fermi-like liquid, JHEP 10 (2011) 034 [arXiv:1106.3883] [INSPIRE].
N. Iizuka and K. Maeda, Stripe instabilities of geometries with hyperscaling violation, Phys. Rev. D 87 (2013) 126006 [arXiv:1301.5677] [INSPIRE].
J. Alsup, E. Papantonopoulos and G. Siopsis, A novel mechanism to generate FFLO states in holographic superconductors, Phys. Lett. B 720 (2013) 379 [arXiv:1210.1541] [INSPIRE].
A. Donos and J.P. Gauntlett, Holographic charge density waves, Phys. Rev. D 87 (2013) 126008 [arXiv:1303.4398] [INSPIRE].
A. Krikun, Charge density wave instability in holographic d-wave superconductor, JHEP 04 (2014) 135 [arXiv:1312.1588] [INSPIRE].
V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].
J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum criticality and holographic superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [INSPIRE].
A. Buchel and C. Pagnutti, Exotic hairy black holes, Nucl. Phys. B 824 (2010) 85 [arXiv:0904.1716] [INSPIRE].
F. Aprile, D. Roest and J.G. Russo, Holographic superconductors from gauged supergravity, JHEP 06 (2011) 040 [arXiv:1104.4473] [INSPIRE].
A. Donos and J.P. Gauntlett, Superfluid black branes in AdS 4 × S 7, JHEP 06 (2011) 053 [arXiv:1104.4478] [INSPIRE].
R.-G. Cai, L. Li and L.-F. Li, A holographic P-wave superconductor model, JHEP 01 (2014) 032 [arXiv:1309.4877] [INSPIRE].
R.-G. Cai, L. Li, L.-F. Li and R.-Q. Yang, Towards complete phase diagrams of a holographic P-wave superconductor model, JHEP 04 (2014) 016 [arXiv:1401.3974] [INSPIRE].
M. Rozali, D. Smyth, E. Sorkin and J.B. Stang, Holographic stripes, Phys. Rev. Lett. 110 (2013) 201603 [arXiv:1211.5600] [INSPIRE].
A. Donos, Striped phases from holography, JHEP 05 (2013) 059 [arXiv:1303.7211] [INSPIRE].
B. Withers, The moduli space of striped black branes, arXiv:1304.2011 [INSPIRE].
M. Rozali, D. Smyth, E. Sorkin and J.B. Stang, Striped order in AdS/CFT correspondence, Phys. Rev. D 87 (2013) 126007 [arXiv:1304.3130] [INSPIRE].
Y. Ling, C. Niu, J. Wu, Z. Xian and H.-b. Zhang, Metal-insulator transition by holographic charge density waves, Phys. Rev. Lett. 113 (2014) 091602 [arXiv:1404.0777] [INSPIRE].
B. Withers, Black branes dual to striped phases, Class. Quant. Grav. 30 (2013) 155025 [arXiv:1304.0129] [INSPIRE].
B. Withers, Holographic checkerboards, JHEP 09 (2014) 102 [arXiv:1407.1085] [INSPIRE].
P. Basu, J. He, A. Mukherjee, M. Rozali and H.-H. Shieh, Competing holographic orders, JHEP 10 (2010) 092 [arXiv:1007.3480] [INSPIRE].
R.-G. Cai, L. Li, L.-F. Li and Y.-Q. Wang, Competition and coexistence of order parameters in holographic multi-band superconductors, JHEP 09 (2013) 074 [arXiv:1307.2768] [INSPIRE].
M. Nishida, Phase diagram of a holographic superconductor model with s-wave and d-wave, JHEP 09 (2014) 154 [arXiv:1403.6070] [INSPIRE].
L.-F. Li, R.-G. Cai, L. Li and Y.-Q. Wang, Competition between s-wave order and d-wave order in holographic superconductors, JHEP 08 (2014) 164 [arXiv:1405.0382] [INSPIRE].
Z.-Y. Nie, R.-G. Cai, X. Gao and H. Zeng, Competition between the s-wave and p-wave superconductivity phases in a holographic model, JHEP 11 (2013) 087 [arXiv:1309.2204] [INSPIRE].
Z.-Y. Nie, R.-G. Cai, X. Gao, L. Li and H. Zeng, Phase transitions in a holographic s + p model with back-reaction, Eur. Phys. J. C 75 (2015) 559 [arXiv:1501.00004] [INSPIRE].
D.K. Pratt et al., Coexistence of competing antiferromagnetic and superconducting phases in the underdoped Ba(Fe 0.953 Co 0.047 ) 2 As 2 compound using X-ray and neutron scattering techniques, Phys. Rev. Lett. 103 (2009) 087001 [arXiv:0903.2833].
S. Avci et al., Phase diagram of Ba 1−x K x Fe 2 As 2, Phys. Rev. B 85 (2012) 184507.
M. Baggioli and M. Goykhman, Phases of holographic superconductors with broken translational symmetry, JHEP 07 (2015) 035 [arXiv:1504.05561] [INSPIRE].
S. Ganguli, J.A. Hutasoit and G. Siopsis, Superconducting dome from holography, Phys. Rev. D 87 (2013) 126003 [arXiv:1302.5426] [INSPIRE].
D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].
M. Blake, D. Tong and D. Vegh, Holographic lattices give the graviton an effective mass, Phys. Rev. Lett. 112 (2014) 071602 [arXiv:1310.3832] [INSPIRE].
R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev. D 88 (2013) 086003 [arXiv:1306.5792] [INSPIRE].
A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP 04 (2014) 040 [arXiv:1311.3292] [INSPIRE].
T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP 05 (2014) 101 [arXiv:1311.5157] [INSPIRE].
D.B. Kaplan, J.-W. Lee, D.T. Son and M.A. Stephanov, Conformality lost, Phys. Rev. D 80 (2009) 125005 [arXiv:0905.4752] [INSPIRE].
K. Jensen, A. Karch, D.T. Son and E.G. Thompson, Holographic Berezinskii-Kosterlitz-Thouless transitions, Phys. Rev. Lett. 105 (2010) 041601 [arXiv:1002.3159] [INSPIRE].
N. Iqbal, H. Liu and M. Mezei, Quantum phase transitions in semilocal quantum liquids, Phys. Rev. D 91 (2015) 025024 [arXiv:1108.0425] [INSPIRE].
M. Jarvinen and E. Kiritsis, Holographic models for QCD in the Veneziano limit, JHEP 03 (2012) 002 [arXiv:1112.1261] [INSPIRE].
D. Arean, I. Iatrakis, M. Järvinen and E. Kiritsis, V-QCD: spectra, the dilaton and the S-parameter, Phys. Lett. B 720 (2013) 219 [arXiv:1211.6125] [INSPIRE].
D. Areán, I. Iatrakis, M. Järvinen and E. Kiritsis, The discontinuities of conformal transitions and mass spectra of V-QCD, JHEP 11 (2013) 068 [arXiv:1309.2286] [INSPIRE].
S.C. Zhang, SO(5) quantum nonlinear σ model theory of the high T c superconductivity, Science 275 (1997) 1089 [cond-mat/9610140].
E. Kiritsis and V. Niarchos, Josephson junctions and AdS/CFT networks, JHEP 07 (2011) 112 [Erratum ibid. 10 (2011) 095] [arXiv:1105.6100] [INSPIRE].
K. Fukushima and T. Hatsuda, The phase diagram of dense QCD, Rept. Prog. Phys. 74 (2011) 014001 [arXiv:1005.4814] [INSPIRE].
T. Alho, M. Järvinen, K. Kajantie, E. Kiritsis and K. Tuominen, On finite-temperature holographic QCD in the Veneziano limit, JHEP 01 (2013) 093 [arXiv:1210.4516] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1510.00020
http://hep.physics.uoc.gr/∼kiritsis/. (Elias Kiritsis)
http://hep.physics.uoc.gr. (Crete Center for Theoretical Physics, Department of Physics, University of Crete, 71003 Heraklion, Greece)
http://www.apc.univ-paris7.fr. (APC, Université Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cité, (UMR du CNRS 7164), Bâtiment Condorcet, F-75205, Paris Cedex 13, France)
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Kiritsis, E., Li, L. Holographic competition of phases and superconductivity. J. High Energ. Phys. 2016, 147 (2016). https://doi.org/10.1007/JHEP01(2016)147
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2016)147
Keywords
- Gauge-gravity correspondence
- AdS-CFT Correspondence
- Holography and condensed matter physics (AdS/CMT)