Skip to main content
Log in

Striped phases from holography

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We discuss new types of second order phase transitions in holography by constructing striped black holes in D = 4 with AdS4 asymptotics. In the context of AdS/CFT, they provide the gravity duals to field theory phases in which translational symmetry is spontaneously broken due to the formation of current density waves. These black holes are associated to three dimensional CFTs at finite temperature and deformed by a uniform chemical potential. We numerically solve a non-linear system of PDEs in order to construct the black hole geometries and extract some of their thermodynamic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. N. Bao, S. Harrison, S. Kachru and S. Sachdev, Vortex lattices and crystalline geometries, arXiv:1303.4390 [INSPIRE].

  3. O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Striped instability of a holographic Fermi-like liquid, JHEP 10 (2011) 034 [arXiv:1106.3883] [INSPIRE].

    Article  ADS  Google Scholar 

  4. Y.-Y. Bu, J. Erdmenger, J.P. Shock and M. Strydom, Magnetic field induced lattice ground states from holography, JHEP 03 (2013) 165 [arXiv:1210.6669] [INSPIRE].

    Article  ADS  Google Scholar 

  5. C. Charmousis, B. Gouteraux, B. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].

    Article  ADS  Google Scholar 

  6. S.K. Domokos and J.A. Harvey, Baryon number-induced Chern-Simons couplings of vector and axial-vector mesons in holographic QCD, Phys. Rev. Lett. 99 (2007) 141602 [arXiv:0704.1604] [INSPIRE].

    Article  ADS  Google Scholar 

  7. A. Donos and J.P. Gauntlett, Holographic helical superconductors, JHEP 12 (2011) 091 [arXiv:1109.3866] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP 08 (2011) 140 [arXiv:1106.2004] [INSPIRE].

    Article  ADS  Google Scholar 

  9. A. Donos and J.P. Gauntlett, Black holes dual to helical current phases, Phys. Rev. D 86 (2012)064010 [arXiv:1204.1734] [INSPIRE].

    ADS  Google Scholar 

  10. A. Donos and J.P. Gauntlett, Helical superconducting black holes, Phys. Rev. Lett. 108 (2012)211601 [arXiv:1203.0533] [INSPIRE].

    Article  ADS  Google Scholar 

  11. A. Aperis, P. Kotetes, E. Papantonopoulos, G. Siopsis, P. Skamagoulis et al., Holographic charge density waves, Phys. Lett. B 702 (2011) 181 [arXiv:1009.6179] [INSPIRE].

    ADS  Google Scholar 

  12. A. Donos, J.P. Gauntlett, J. Sonner and B. Withers, Competing orders in M-theory: superfluids, stripes and metamagnetism, JHEP 03 (2013) 108 [arXiv:1212.0871] [INSPIRE].

    Article  ADS  Google Scholar 

  13. A. Donos and S.A. Hartnoll, Metal-insulator transition in holography, arXiv:1212.2998 [INSPIRE].

  14. P. Figueras, J. Lucietti and T. Wiseman, Ricci solitons, Ricci flow and strongly coupled CFT in the Schwarzschild Unruh or Boulware vacua, Class. Quant. Grav. 28 (2011) 215018 [arXiv:1104.4489] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. J.P. Gauntlett, S. Kim, O. Varela and D. Waldram, Consistent supersymmetric Kaluza-Klein truncations with massive modes, JHEP 04 (2009) 102 [arXiv:0901.0676] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum criticality and holographic superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of charged dilaton black holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. S.S. Gubser, On nonuniform black branes, Class. Quant. Grav. 19 (2002) 4825 [hep-th/0110193] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. S.S. Gubser, Breaking an abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008)065034 [arXiv:0801.2977] [INSPIRE].

    ADS  Google Scholar 

  20. S.A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324 [INSPIRE].

  21. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    Article  ADS  Google Scholar 

  22. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008)015 [arXiv:0810.1563] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. S.A. Hartnoll and R. Pourhasan, Entropy balance in holographic superconductors, JHEP 07 (2012)114 [arXiv:1205.1536] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Headrick, S. Kitchen and T. Wiseman, A new approach to static numerical relativity and its application to Kaluza-Klein black holes, Class. Quant. Grav. 27 (2010) 035002 [arXiv:0905.1822] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. G.T. Horowitz, J.E. Santos and D. Tong, Further evidence for lattice-induced scaling, JHEP 11 (2012)102 [arXiv:1209.1098] [INSPIRE].

    Article  ADS  Google Scholar 

  26. G.T. Horowitz, J.E. Santos and D. Tong, Optical conductivity with holographic lattices, JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. N. Iizuka, S. Kachru, N. Kundu, P. Narayan, N. Sircar et al., Bianchi attractors: a classification of extremal black brane geometries, JHEP 07 (2012) 193 [arXiv:1201.4861] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. N. Iizuka, S. Kachru, N. Kundu, P. Narayan, N. Sircar et al., Extremal horizons with reduced symmetry: hyperscaling violation, stripes and a classification for the homogeneous case, JHEP 03 (2013) 126 [arXiv:1212.1948] [INSPIRE].

    Article  ADS  Google Scholar 

  29. N. Iizuka and K. Maeda, Stripe instabilities of geometries with hyperscaling violation, arXiv:1301.5677 [INSPIRE].

  30. H. Ooguri and C.-S. Park, Spatially modulated phase in holographic quark-gluon plasma, Phys. Rev. Lett. 106 (2011) 061601 [arXiv:1011.4144] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. M. Rozali, D. Smyth, E. Sorkin and J.B. Stang, Holographic stripes, arXiv:1211.5600 [INSPIRE].

  32. M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].

  33. M. Vojta, Lattice symmetry breaking in cuprate superconductors: stripes, nematics and superconductivity, Adv. Phys. 58 (2009) 699 [arXiv:0901.3145].

    Article  ADS  Google Scholar 

  34. T. Wiseman, Static axisymmetric vacuum solutions and nonuniform black strings, Class. Quant. Grav. 20 (2003) 1137 [hep-th/0209051] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aristomenis Donos.

Additional information

ArXiv ePrint: 1303.7211

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donos, A. Striped phases from holography. J. High Energ. Phys. 2013, 59 (2013). https://doi.org/10.1007/JHEP05(2013)059

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)059

Keywords

Navigation