Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Muon g − 2 vs LHC in supersymmetric models

  • Open Access
  • Published: 23 January 2014
  • volume 2014, Article number: 123 (2014)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Muon g − 2 vs LHC in supersymmetric models
Download PDF
  • Motoi Endo1,
  • Koichi Hamaguchi1,
  • Sho Iwamoto1 &
  • …
  • Takahiro Yoshinaga1 
  • 490 Accesses

  • 80 Citations

  • 2 Altmetric

  • Explore all metrics

  • Cite this article

Abstract

There is more than 3σ deviation between the experimental and theoretical results of the muon g − 2. When interpreted in SUSY extensions of the SM, this anomaly suggests that some of the SUSY particles have a mass of order 100 GeV. We study searches for those particles at the LHC with particular attention to the muon g − 2. In particular, the recent results on the searches for the non-colored SUSY particles are investigated in the parameter region where the muon g − 2 is explained. The analysis is independent of details of the SUSY models. Future prospects of the collider searches are also discussed.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. Muon G-2 collaboration, G. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

    ADS  Google Scholar 

  4. B.L. Roberts, Status of the Fermilab muon (g − 2) experiment, Chin. Phys. C 34 (2010) 741 [arXiv:1001.2898] [INSPIRE].

    Article  ADS  Google Scholar 

  5. K. Hagiwara, A. Martin, D. Nomura and T. Teubner, Improved predictions for g − 2 of the muon and α QED \( \left( {\mathrm{M}_Z^2} \right) \), Phys. Lett. B 649 (2007) 173 [hep-ph/0611102] [INSPIRE].

    Article  ADS  Google Scholar 

  6. T. Teubner, K. Hagiwara, R. Liao, A. Martin and D. Nomura, Update of g − 2 of the muon and delta alpha, Chin. Phys. C 34 (2010) 728 [arXiv:1001.5401] [INSPIRE].

    Article  ADS  Google Scholar 

  7. K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2) μ and α \( \left( {\mathrm{M}_Z^2} \right) \) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Davier, A. Hoecker, G. Lopez Castro, B. Malaescu, X. Mo et al., The discrepancy between τ and e + e − spectral functions revisited and the consequences for the muon magnetic anomaly, Eur. Phys. J. C 66 (2010) 127 [arXiv:0906.5443] [INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Davier, A. Hoecker, B. Malaescu, C. Yuan and Z. Zhang, Reevaluation of the hadronic contribution to the muon magnetic anomaly using new e + e − → π +π− cross section data from BABAR, Eur. Phys. J. C 66 (2010) 1 [arXiv:0908.4300] [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α \( \left( {\mathrm{M}_Z^2} \right) \), Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].

  11. J. Prades, E. de Rafael and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment, arXiv:0901.0306 [INSPIRE].

  12. A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D 67 (2003) 073006 [Erratum ibid. D 73 (2006) 119901] [hep-ph/0212229] [INSPIRE].

  13. J.L. Lopez, D.V. Nanopoulos and X. Wang, Large (g − 2) μ in SU(5) × U(1) supergravity models, Phys. Rev. D 49 (1994) 366 [hep-ph/9308336] [INSPIRE].

    ADS  Google Scholar 

  14. U. Chattopadhyay and P. Nath, Probing supergravity grand unification in the Brookhaven g − 2 experiment, Phys. Rev. D 53 (1996) 1648 [hep-ph/9507386] [INSPIRE].

    ADS  Google Scholar 

  15. T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric Standard Model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].

  16. ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector using final states with jets and missing transverse momentum and 5.8 fb−1 of \( \sqrt{s} \) = 8 TeV proton-proton collision data, ATLAS-CONF-2012-109, CERN, Geneva Switzerland (2012).

  17. CMS collaboration, Search for supersymmetry in hadronic final states using MT2 in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 10 (2012) 018 [arXiv:1207.1798] [INSPIRE].

    ADS  Google Scholar 

  18. CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. Lett. 109 (2012) 171803 [arXiv:1207.1898] [INSPIRE].

    Article  ADS  Google Scholar 

  19. Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric Standard Model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].

    ADS  Google Scholar 

  20. J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].

    Article  ADS  Google Scholar 

  21. H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m Z ?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].

    Article  ADS  Google Scholar 

  22. J.R. Ellis, G. Ridolfi and F. Zwirner, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys. Lett. B 262 (1991) 477 [INSPIRE].

    Article  ADS  Google Scholar 

  23. Y. Okada, M. Yamaguchi and T. Yanagida, Renormalization group analysis on the Higgs mass in the softly broken supersymmetric Standard Model, Phys. Lett. B 262 (1991) 54 [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Endo, K. Hamaguchi, S. Iwamoto, K. Nakayama and N. Yokozaki, Higgs mass and muon anomalous magnetic moment in the U(1) extended MSSM, Phys. Rev. D 85 (2012) 095006 [arXiv:1112.6412] [INSPIRE].

    ADS  Google Scholar 

  25. M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs mass and muon anomalous magnetic moment in supersymmetric models with vector-like matters, Phys. Rev. D 84 (2011) 075017 [arXiv:1108.3071] [INSPIRE].

    ADS  Google Scholar 

  26. M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs mass, muon g − 2 and LHC prospects in gauge mediation models with vector-like matters, Phys. Rev. D 85 (2012) 095012 [arXiv:1112.5653] [INSPIRE].

    ADS  Google Scholar 

  27. M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Vacuum stability bound on extended GMSB models, JHEP 06 (2012) 060 [arXiv:1202.2751] [INSPIRE].

    Article  ADS  Google Scholar 

  28. M. Endo, K. Hamaguchi, K. Ishikawa, S. Iwamoto and N. Yokozaki, Gauge mediation models with vectorlike matters at the LHC, JHEP 01 (2013) 181 [arXiv:1212.3935] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J.L. Evans, M. Ibe and T.T. Yanagida, Relatively heavy Higgs boson in more generic gauge mediation, Phys. Lett. B 705 (2011) 342 [arXiv:1107.3006] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J.L. Evans, M. Ibe, S. Shirai and T.T. Yanagida, A 125 GeV Higgs boson and muon g − 2 in more generic gauge mediation, Phys. Rev. D 85 (2012) 095004 [arXiv:1201.2611] [INSPIRE].

    ADS  Google Scholar 

  31. G.-C. Cho, K. Hagiwara, Y. Matsumoto and D. Nomura, The MSSM confronts the precision electroweak data and the muon g − 2, JHEP 11 (2011) 068 [arXiv:1104.1769] [INSPIRE].

    Article  ADS  Google Scholar 

  32. ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 13.0 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2012-154, CERN, Geneva Switzerland (2012).

  33. CMS collaboration, Search for direct EWK production of SUSY particles in multilepton modes with 8 TeV data, CMS-PAS-SUS-12-022, CERN, Geneva Switzerland (2012).

  34. M. Ibe, S. Matsumoto, T.T. Yanagida and N. Yokozaki, Heavy squarks and light sleptons in gauge mediation — from the viewpoint of 125 GeV Higgs boson and muon g − 2, JHEP 03 (2013) 078 [arXiv:1210.3122] [INSPIRE].

    Article  ADS  Google Scholar 

  35. M. Carena, I. Low and C.E. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].

    Article  ADS  Google Scholar 

  36. T. Kitahara, Vacuum stability constraints on the enhancement of the h → γγ rate in the MSSM, JHEP 11 (2012) 021 [arXiv:1208.4792] [INSPIRE].

    Article  ADS  Google Scholar 

  37. M. Carena, S. Gori, I. Low, N.R. Shah and C.E. Wagner, Vacuum stability and Higgs diphoton decays in the MSSM, JHEP 02 (2013) 114 [arXiv:1211.6136] [INSPIRE].

    Article  ADS  Google Scholar 

  38. T. Kitahara and T. Yoshinaga, Stau with large mass difference and enhancement of the Higgs to diphoton decay rate in the MSSM, JHEP 05 (2013) 035 [arXiv:1303.0461] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    Article  ADS  Google Scholar 

  40. J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A. Kudo and M. Yamaguchi, Inflation with low reheat temperature and cosmological constraint on stable charged massive particles, Phys. Lett. B 516 (2001) 151 [hep-ph/0103272] [INSPIRE].

    Article  ADS  Google Scholar 

  42. T. Falk, K.A. Olive and M. Srednicki, Heavy sneutrinos as dark matter, Phys. Lett. B 339 (1994) 248 [hep-ph/9409270] [INSPIRE].

    Article  ADS  Google Scholar 

  43. B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. A. Djouadi, M. Muhlleitner and M. Spira, Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].

    ADS  Google Scholar 

  45. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  46. ATLAS collaboration, ATLAS Monte Carlo tunes for MC09, ATL-PHYS-PUB-2010-002, CERN, Geneva Switzerland (2010).

  47. J. Pumplin, D. Stump, J. Huston, H. Lai, P.M. Nadolsky et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    Article  ADS  Google Scholar 

  48. Prospino 2.1 webpage, http://www.thphys.uni-heidelberg.de/˜plehn/index.php?show=prospino&visible=tools.

  49. W. Beenakker, R. Hopker, M. Spira and P. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].

    Article  ADS  Google Scholar 

  50. S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].

  51. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  52. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  Google Scholar 

  53. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].

    Article  ADS  Google Scholar 

  54. ATLAS collaboration, Measurement of the mistag rate with 5 fb−1 of data collected by the ATLAS detector, ATLAS-CONF-2012-040, CERN, Geneva Switzerland (2012).

  55. ATLAS collaboration, Measurement of the b-tag efficiency in a sample of jets containing muons with 5 fb−1 of data from the ATLAS detector, ATLAS-CONF-2012-043, CERN, Geneva Switzerland (2012).

  56. ATLAS collaboration, Electron performance measurements with the ATLAS detector using the 2010 LHC proton-proton collision data, Eur. Phys. J. C 72 (2012) 1909 [arXiv:1110.3174] [INSPIRE].

    ADS  Google Scholar 

  57. ATLAS collaboration, Muon reconstruction efficiency in reprocessed 2010 LHC proton-proton collision data recorded with the ATLAS detector, ATLAS-CONF-2011-063, CERN, Geneva Switzerland (2011).

  58. J. Hisano and S. Sugiyama, Charge-breaking constraints on left-right mixing of stau’s, Phys. Lett. B 696 (2011) 92 [Erratum ibid. B 719 (2013) 472] [arXiv:1011.0260] [INSPIRE].

  59. H. Baer, V. Barger, A. Lessa and X. Tata, Discovery potential for SUSY at a high luminosity upgrade of LHC14, Phys. Rev. D 86 (2012) 117701 [arXiv:1207.4846] [INSPIRE].

    ADS  Google Scholar 

  60. H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev et al., Same sign diboson signature from supersymmetry models with light higgsinos at the LHC, Phys. Rev. Lett. 110 (2013) 151801 [arXiv:1302.5816] [INSPIRE].

    Article  ADS  Google Scholar 

  61. ATLAS collaboration, Search for direct chargino production in anomaly-mediated supersymmetry breaking models based on a disappearing-track signature in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 01 (2013) 131 [arXiv:1210.2852] [INSPIRE].

    ADS  Google Scholar 

  62. Fermilab P989 collaboration, B. Lee Roberts, The Fermilab muon (g − 2) project, Nucl. Phys. Proc. Suppl. 218 (2011) 237 [INSPIRE].

    Article  Google Scholar 

  63. J-PARC New g-2/EDM experiment collaboration, H. Iinuma, New approach to the muon g−2 and EDM experiment at J-PARC, J. Phys. Conf. Ser. 295 (2011) 012032 [INSPIRE].

    Article  ADS  Google Scholar 

  64. Y.M. Shatunov et al., Project of a new electron positron collider VEPP-2000, in Proceedings of the 7th European Particle Accelerator Conference, J.L. Laclare et al. eds., Conf. Proc. C 0006262 (2000) 439 [INSPIRE].

  65. E. de Rafael, Update of the electron and muon g-factors, Nucl. Phys. Proc. Suppl. 234 (2013) 193 [arXiv:1210.4705] [INSPIRE].

    Article  ADS  Google Scholar 

  66. T. Blum, Lattice calculation of the lowest order hadronic contribution to the muon anomalous magnetic moment, Phys. Rev. Lett. 91 (2003) 052001 [hep-lat/0212018] [INSPIRE].

    Article  ADS  Google Scholar 

  67. QCDSF collaboration, M. Gockeler et al., Vacuum polarization and hadronic contribution to muon g − 2 from lattice QCD, Nucl. Phys. B 688 (2004) 135 [hep-lat/0312032] [INSPIRE].

    Article  ADS  Google Scholar 

  68. C. Aubin and T. Blum, Calculating the hadronic vacuum polarization and leading hadronic contribution to the muon anomalous magnetic moment with improved staggered quarks, Phys. Rev. D 75 (2007) 114502 [hep-lat/0608011] [INSPIRE].

    ADS  Google Scholar 

  69. X. Feng, K. Jansen, M. Petschlies and D.B. Renner, Two-flavor QCD correction to lepton magnetic moments at leading-order in the electromagnetic coupling, Phys. Rev. Lett. 107 (2011) 081802 [arXiv:1103.4818] [INSPIRE].

    Article  ADS  Google Scholar 

  70. P. Boyle, L. Del Debbio, E. Kerrane and J. Zanotti, Lattice determination of the hadronic contribution to the muon g − 2 using dynamical domain wall fermions, Phys. Rev. D 85 (2012) 074504 [arXiv:1107.1497] [INSPIRE].

    ADS  Google Scholar 

  71. M. Della Morte, B. Jager, A. Juttner and H. Wittig, Towards a precise lattice determination of the leading hadronic contribution to (g − 2) μ , JHEP 03 (2012) 055 [arXiv:1112.2894] [INSPIRE].

    Article  Google Scholar 

  72. ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 21 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-035, CERN, Geneva, Switzerland (2013).

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan

    Motoi Endo, Koichi Hamaguchi, Sho Iwamoto & Takahiro Yoshinaga

Authors
  1. Motoi Endo
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Koichi Hamaguchi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Sho Iwamoto
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Takahiro Yoshinaga
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Sho Iwamoto.

Additional information

ArXiv ePrint: 1303.4256

Research Fellow of the Japan Society for the Promotion of Science. (Sho Iwamoto)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Endo, M., Hamaguchi, K., Iwamoto, S. et al. Muon g − 2 vs LHC in supersymmetric models. J. High Energ. Phys. 2014, 123 (2014). https://doi.org/10.1007/JHEP01(2014)123

Download citation

  • Received: 09 April 2013

  • Revised: 21 December 2013

  • Accepted: 23 December 2013

  • Published: 23 January 2014

  • DOI: https://doi.org/10.1007/JHEP01(2014)123

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Supersymmetry Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature