Skip to main content
Log in

Vacuum stability bound on extended GMSB models

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Extensions of GMSB models were recently explored to explain the recent reports of the Higgs boson mass around 124 − 126 GeV. Some models predict a large μ term, which can spoil the vacuum stability of the universe. We study two GMSB extensions: i) the model with a large trilinear coupling of the top squark, and ii) that with extra vector- like matters. In both models, the vacuum stability condition provides upper bounds on the gluino mass if combined with the muon g − 2. The whole parameter region is expected to be covered by LHC at \( \sqrt {s} = {\text{14TeV}} \). The analysis is also applied to the mSUGRA models with the vector-like matters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Gianotti, Update on the Standard Model Higgs searches in ATLAS, CERN Public Seminar, 13 December 2011.

  2. ATLAS collaboration, Combination of Higgs boson searches with up to 4.9 fb −1 of pp collisions data taken at a center-of-mass energy of 7 TeV with the ATLAS experiment at the LHC, ATLAS-CONF-2011-163 (2011).

  3. G. Tonelli, Update on the Standard Model Higgs searches in CMS, CERN Public Seminar, 13 December 2011.

  4. CMS collaboration, Combination of SM Higgs searches, PAS-HIG-11-032.

  5. Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  6. Muon G-2 collaboration, G. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

    ADS  Google Scholar 

  7. K. Hagiwara, A. Martin, D. Nomura and T. Teubner, Improved predictions for g − 2 of the muon and α QED \( \left( {M_Z^{{2}}} \right) \), Phys. Lett. B 649 (2007) 173 [hep-ph/0611102] [INSPIRE].

    Article  ADS  Google Scholar 

  8. T. Teubner, K. Hagiwara, R. Liao, A. Martin and D. Nomura, Update of g − 2 of the muon andα, arXiv:1001.5401 [INSPIRE].

  9. K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2) μ and \( {{\alpha }_{{M_Z^2}}} \) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Davier, A. Hoecker, G. Lopez Castro, B. Malaescu, X. Mo, et al., The discrepancy between τ and e + e spectral functions revisited and the consequences for the muon magnetic anomaly, Eur. Phys. J. C 66 (2010) 127 [arXiv:0906.5443] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Davier, A. Hoecker, B. Malaescu, C. Yuan and Z. Zhang, Reevaluation of the hadronic contribution to the muon magnetic anomaly using new e + e → π + π cross section data from BABAR, Eur. Phys. J. C 66 (2010) 1 [arXiv:0908.4300] [INSPIRE].

    Article  ADS  Google Scholar 

  12. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α MZ, Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].

  13. M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs mass and muon anomalous magnetic moment in supersymmetric models with vector-like matters, Phys. Rev. D 84 (2011) 075017 [arXiv:1108.3071] [INSPIRE].

    ADS  Google Scholar 

  14. M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs mass, muon g − 2 and LHC prospects in gauge mediation models with vector-like matters, arXiv:1112.5653 [INSPIRE].

  15. M. Endo, K. Hamaguchi, S. Iwamoto, K. Nakayama and N. Yokozaki, Higgs mass and muon anomalous magnetic moment in the U(1) extended MSSM, arXiv:1112.6412 [INSPIRE].

  16. J.L. Evans, M. Ibe, S. Shirai and T.T. Yanagida, A 125 GeV Higgs boson and muon g − 2 in more generic gauge mediation, arXiv:1201.2611 [INSPIRE].

  17. T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].

  18. M. Ratz, K. Schmidt-Hoberg and M.W. Winkler, A note on the primordial abundance of Stau NLSPs, JCAP 10 (2008) 026 [arXiv:0808.0829] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. Endo, K. Hamaguchi and K. Nakaji, Probing high reheating temperature scenarios at the LHC with long-lived staus, JHEP 11 (2010) 004 [arXiv:1008.2307] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J. Hisano and S. Sugiyama, Charge-breaking constraints on left-right mixing of staus, Phys. Lett. B 696 (2011) 92 [arXiv:1011.0260] [INSPIRE].

    Article  ADS  Google Scholar 

  21. J.L. Evans, M. Ibe and T.T. Yanagida, Relatively heavy Higgs boson in more generic gauge mediation, Phys. Lett. B 705 (2011) 342 [arXiv:1107.3006] [INSPIRE].

    Article  ADS  Google Scholar 

  22. J.L. Evans, M. Ibe and T.T. Yanagida, Probing extra matter in gauge mediation through the lightest Higgs boson mass, arXiv:1108.3437 [INSPIRE].

  23. T. Moroi, R. Sato and T.T. Yanagida, Extra matters decree the relatively heavy Higgs of mass about 125 GeV in the supersymmetric model, Phys. Lett. B 709 (2012) 218 [arXiv:1112.3142] [INSPIRE].

    Article  ADS  Google Scholar 

  24. S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].

  25. C.G. Callan Jr. and S.R. Coleman, The fate of the false vacuum. 2. First quantum corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].

    ADS  Google Scholar 

  26. A.D. Linde, Decay of the false vacuum at finite temperature, Nucl. Phys. B 216 (1983) 421 [Erratum ibid. B 223 (1983) 544] [INSPIRE].

  27. A. Kusenko, P. Langacker and G. Segre, Phase transitions and vacuum tunneling into charge and color breaking minima in the MSSM, Phys. Rev. D 54 (1996) 5824 [hep-ph/9602414] [INSPIRE].

    ADS  Google Scholar 

  28. C. Le Mouel, Optimal charge and color breaking conditions in the MSSM, Nucl. Phys. B 607 (2001) 38 [hep-ph/0101351] [INSPIRE].

    Article  ADS  Google Scholar 

  29. C. Le Mouel, Charge and color breaking conditions associated to the top quark Yukawa coupling, Phys. Rev. D 64 (2001) 075009 [hep-ph/0103341] [INSPIRE].

    ADS  Google Scholar 

  30. B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  31. T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, FeynHiggs 2.7, Nucl. Phys. Proc. Suppl. 205-206 (2010) 152 [arXiv:1007.0956] [INSPIRE].

    Article  ADS  Google Scholar 

  32. Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ -lepton properties, arXiv:1010.1589 [INSPIRE].

  33. M. Misiak, H. Asatrian, K. Bieri, M. Czakon, A. Czarnecki, et al., Estimate of \( B\left( {\overline B \to {{X}_s} \gamma } \right)at o\left( {\alpha_s^2} \right) \), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].

    Article  ADS  Google Scholar 

  34. G. Degrassi, P. Gambino and P. Slavich, SusyBSG: a Fortran code for BR(BX s γ) in the MSSM with minimal flavor violation, Comput. Phys. Commun. 179 (2008) 759 [arXiv:0712.3265] [INSPIRE].

    Article  ADS  Google Scholar 

  35. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  36. J.S. Conway, Pretty Good Simulation of high energy collisions (PGS4), http://www.physics.ucdavis.edu/~conway/research/research.html.

  37. W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].

  38. ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7TeV \) proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].

    Article  ADS  Google Scholar 

  39. CMS collaboration, Search for supersymmetry in all-hadronic events with missing energy, PAS-SUS-11-004.

  40. CMS collaboration, Search for supersymmetry in all-hadronic events with α T , PAS-SUS-11-003.

  41. CMS collaboration, Search for supersymmetry with the razor variables at CMS, PAS-SUS-11-008.

  42. ATLAS collaboration, G. Aad et al., Search for diphoton events with large missing transverse momentum in 1 fb 1 of 7 TeV proton-proton collision data with the ATLAS detector, Phys. Lett. B 710 (2012) 519 [arXiv:1111.4116] [INSPIRE].

    Article  ADS  Google Scholar 

  43. CMS collaboration, Search for supersymmetry in events with photons, jets and missing energy, PAS-SUS-11-009.

  44. ATLAS collaboration, G. Aad et al., Search for heavy long-lived charged particles with the ATLAS detector in pp collisions at \( \sqrt {s} = 7TeV \), Phys. Lett. B 703 (2011) 428 [arXiv:1106.4495] [INSPIRE].

    Article  ADS  Google Scholar 

  45. CMS collaboration, Search for heavy stable charged particles, PAS-EXO-11-022.

  46. CMS collaboration, Update on searches for new physics in CMS, CERN PH-LHC Seminar.

  47. Y. Kats, P. Meade, M. Reece and D. Shih, The status of GMSB after 1/fb at the LHC, JHEP 02 (2012) 115 [arXiv:1110.6444] [INSPIRE].

    Article  ADS  Google Scholar 

  48. ATLAS collaboration, G. Aad et al., Searches for supersymmetry with the ATLAS detector using final states with two leptons and missing transverse momentum in \( \sqrt {s} = 7TeV \) proton-proton collisions, Phys. Lett. B 709 (2012) 137 [arXiv:1110.6189] [INSPIRE].

    Article  ADS  Google Scholar 

  49. H. Baer, V. Barger, A. Lessa and X. Tata, LHC discovery potential for supersymmetry with \( \sqrt {s} = 7TeV \) and 5.30 fb −1 , Phys. Rev. D 85 (2012) 051701 [arXiv:1112.3044] [INSPIRE].

    ADS  Google Scholar 

  50. CMS collaboration, LHC SUSY discovery potential, CMS-CR-2006-049 (2006).

  51. H. Baer, V. Barger, A. Lessa and X. Tata, Supersymmetry discovery potential of the LHC at \( \sqrt {s} = {1}0TeV \) and 14 TeV without and with missing E T , JHEP 09 (2009) 063 [arXiv:0907.1922] [INSPIRE].

    Article  ADS  Google Scholar 

  52. E. Nakamura and S. Shirai, Discovery potential for low-scale gauge mediation at early LHC, JHEP 03 (2011) 115 [arXiv:1010.5995] [INSPIRE].

    Article  ADS  Google Scholar 

  53. T. Moroi and Y. Okada, Radiative corrections to Higgs masses in the supersymmetric model with an extra family and antifamily, Mod. Phys. Lett. A 7 (1992) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  54. T. Moroi and Y. Okada, Upper bound of the lightest neutral Higgs mass in extended supersymmetric standard models, Phys. Lett. B 295 (1992) 73 [INSPIRE].

    Article  ADS  Google Scholar 

  55. K. Babu, I. Gogoladze and C. Kolda, Perturbative unification and Higgs boson mass bounds, hep-ph/0410085 [INSPIRE].

  56. K. Babu, I. Gogoladze, M.U. Rehman and Q. Shafi, Higgs boson mass, sparticle spectrum and little hierarchy problem in extended MSSM, Phys. Rev. D 78 (2008) 055017 [arXiv:0807.3055] [INSPIRE].

    ADS  Google Scholar 

  57. S.P. Martin, Extra vector-like matter and the lightest Higgs scalar boson mass in low-energy supersymmetry, Phys. Rev. D 81 (2010) 035004 [arXiv:0910.2732] [INSPIRE].

    ADS  Google Scholar 

  58. M. Asano, T. Moroi, R. Sato and T.T. Yanagida, Non-anomalous discrete R-symmetry, extra matters and enhancement of the lightest SUSY Higgs mass, Phys. Lett. B 705 (2011) 337 [arXiv:1108.2402] [INSPIRE].

    Article  ADS  Google Scholar 

  59. A. Djouadi, J.-L. Kneur and G. Moultaka, Suspect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  60. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Hamaguchi.

Additional information

ArXiv ePrint: 1202.2751

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endo, M., Hamaguchi, K., Iwamoto, S. et al. Vacuum stability bound on extended GMSB models. J. High Energ. Phys. 2012, 60 (2012). https://doi.org/10.1007/JHEP06(2012)060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)060

Keywords

Navigation