Abstract
Kinematic distributions in the decays of the newly discovered resonance to four leptons are a powerful probe of the tensor structure of its couplings to electroweak gauge bosons. We present analytic calculations for both signal and background of the fully differential cross section for the ‘Golden Channel’ e + e − μ + μ − final state. We include all interference effects between intermediate gauge bosons and allow them to be on- or off-shell. For the signal we compute the fully differential decay width for general scalar couplings to ZZ,γγ,andZγ. For the background we compute the leading order fully differential cross section for q q annihilation into Z and γ gauge bosons, including the contribution from the resonant Z → 2e2μ process. We also present singly and doubly differential projections and study the interference effects on the differential spectra. These expressions can be used in a variety of ways to uncover the nature of the newly discovered resonance or any new scalars decaying to neutral gauge bosons which might be discovered in the future.
References
ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
Y. Gao, A.V. Gritsan, Z. Guo, K. Melnikov, M. Schulze, et al., Spin determination of single-produced resonances at hadron colliders, Phys. Rev. D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE].
A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev. D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE].
J.S. Gainer, K. Kumar, I. Low and R. Vega-Morales, Improving the sensitivity of Higgs boson searches in the golden channel, JHEP 11 (2011) 027 [arXiv:1108.2274] [INSPIRE].
S. Bolognesi, Y. Gao, A.V. Gritsan, K. Melnikov, M. Schulze, et al., On the spin and parity of a single-produced resonance at the LHC, Phys. Rev. D 86 (2012) 095031 [arXiv:1208.4018] [INSPIRE].
R. Boughezal, T.J. LeCompte and F. Petriello, Single-variable asymmetries for measuring the ‘Higgs’ boson spin and CP properties, arXiv:1208.4311 [INSPIRE].
D. Stolarski and R. Vega-Morales, Directly measuring the tensor structure of the scalar coupling to gauge bosons, Phys. Rev. D 86 (2012) 117504 [arXiv:1208.4840] [INSPIRE].
J. Gunion and Z. Kunszt, Lepton correlations in gauge boson pair production and decay, Phys. Rev. D 33 (1986) 665 [INSPIRE].
A. Soni and R. Xu, Probing CP-violation via Higgs decays to four leptons, Phys. Rev. D 48 (1993)5259 [hep-ph/9301225] [INSPIRE].
S. Choi, . Miller, D.J., M. Muhlleitner and P. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].
T. Matsuura and J. van der Bij, Characteristics of leptonic signals for Z boson pairs at hadron colliders, Z. Phys. C 51 (1991) 259 [INSPIRE].
C. Buszello, I. Fleck, P. Marquard and J. van der Bij, Prospective analysis of spin- and CP-sensitive variables in \( H\to ZZ\to l_1^{+}l_1^{-}l_2^{+}l_2^{-} \) at the LHC, Eur. Phys. J. C 32 (2004) 209 [hep-ph/0212396] [INSPIRE].
F. Fiedler, A. Grohsjean, P. Haefner and P. Schieferdecker, The matrix element method and its application in measurements of the top quark mass, Nucl. Instrum. Meth. A 624 (2010) 203 [arXiv:1003.1316] [INSPIRE].
I. Volobouev, Matrix element method in HEP: transfer functions, efficiencies and likelihood normalization, arXiv:1101.2259 [INSPIRE].
A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the standard model, arXiv:1207.6082 [INSPIRE].
J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5 : going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].
P. Avery, D. Bourilkov, M. Chen, T. Cheng, A. Drozdetskiy, et al., Precision studies of the Higgs golden channel H → ZZ ∗ → 4l. Part I. Kinematic discriminants from leading order matrix elements, arXiv:1210.0896 [INSPIRE].
J.M. Campbell, W.T. Giele and C. Williams, Extending the matrix element method to next-to-leading order, arXiv:1205.3434 [INSPIRE].
J.M. Campbell, W.T. Giele and C. Williams, The matrix element method at next-to-leading order, JHEP 11 (2012) 043 [arXiv:1204.4424] [INSPIRE].
K. Hagiwara, R. Peccei, D. Zeppenfeld and K. Hikasa, Probing the weak boson sector in e + e − → W + W −, Nucl. Phys. B 282 (1987) 253 [INSPIRE].
Q.-H. Cao, C. Jackson, W.-Y. Keung, I. Low and J. Shu, The Higgs mechanism and loop-induced decays of a scalar into two Z bosons, Phys. Rev. D 81 (2010) 015010 [arXiv:0911.3398] [INSPIRE].
J.S. Gainer, W.-Y. Keung, I. Low and P. Schwaller, Looking for a light Higgs boson in the Zγ→ℓℓγ channel,Phys. Rev. D 86(2012)033010[arXiv:1112.1405][INSPIRE].
B. Coleppa, K. Kumar and H.E. Logan, Can the 126 GeV boson be a pseudoscalar?, Phys. Rev. D 86 (2012) 075022 [arXiv:1208.2692] [INSPIRE].
I. Low, J. Lykken and G. Shaughnessy, Have we observed the Higgs (imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].
B.A. Dobrescu and J.D. Lykken, Semileptonic decays of the standard Higgs boson, JHEP 04 (2010)083 [arXiv:0912.3543] [INSPIRE].
Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].
N.D. Christensen and C. Duhr, FeynRules - Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].
CMS collaboration, Observation of Z decays to four leptons with the CMS detector at the LHC, JHEP 12 (2012) 034 [arXiv:1210.3844] [INSPIRE].
C. Zecher, T. Matsuura and J. van der Bij, Leptonic signals from off-shell Z boson pairs at hadron colliders, Z. Phys. C 64 (1994) 219 [hep-ph/9404295] [INSPIRE].
T. Binoth, N. Kauer and P. Mertsch, Gluon-induced QCD corrections to \( pp\to ZZ\to l\overline{l}{l^{\prime }}{{\overline{l}}^{-}} \) -prime, arXiv:0807.0024 [INSPIRE].
N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, JHEP 08 (2012) 116 [arXiv:1206.4803] [INSPIRE].
M. Jamin and M.E. Lautenbacher, TRACER: version 1.1: a Mathematica package for gamma algebra in arbitrary dimensions, Comput. Phys. Commun. 74 (1993) 265 [INSPIRE].
T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W + W − W Z and ZZ production in the POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE].
P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].
S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].
S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].
J. Pumplin, D. Stump, J. Huston, H. Lai, P.M. Nadolsky, et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].
Author information
Authors and Affiliations
Corresponding authors
Additional information
ArXiv ePrint: 1211.1959
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Chen, Y., Tran, N. & Vega-Morales, R. Scrutinizing the Higgs signal and background in the 2e2μ golden channel. J. High Energ. Phys. 2013, 182 (2013). https://doi.org/10.1007/JHEP01(2013)182
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2013)182
Keywords
- Higgs Physics
- Standard Model