Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Journal of High Energy Physics
  3. Article
Scrutinizing the Higgs signal and background in the 2e2μ golden channel
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Disentangling QCD and new physics in D → πℓ+ℓ−

16 April 2021

Aoife Bharucha, Diogo Boito & Cédric Méaux

Precise predictions for V + 2 jet backgrounds in searches for invisible Higgs decays

16 January 2023

J. M. Lindert, S. Pozzorini & M. Schönherr

Exotic Higgs decays into displaced jets at the LHeC

18 February 2021

Kingman Cheung, Oliver Fischer, … Jose Zurita

Enhancing the Large Hadron Collider sensitivity to charged and neutral broad resonances of new gauge sectors

22 February 2022

J. Fiaschi, F. Giuli, … S. Moretti

Higgs interference effects at the one-loop level in the 1-Higgs-Singlet extension of the Standard Model

18 July 2019

Nikolas Kauer, Alexander Lind, … Weimin Song

RIP Hb b ¯ $$ Hb\overline{b} $$ : how other Higgs production modes conspire to kill a rare signal at the LHC

10 November 2020

Davide Pagani, Hua-Sheng Shao & Marco Zaro

Probing the $$h c\bar{c} $$ h c c ¯ coupling at a Future Circular Collider in the electron-hadron mode

27 January 2023

J. Hernández-Sánchez, C. G. Honorato & S. Moretti

Measuring the ratio of HW W and HZZ couplings through W +W −H production

21 August 2018

Cheng-Wei Chiang, Xiao-Gang He & Gang Li

Cross-fertilising extra gauge boson searches at the LHC

04 November 2021

Jack Y. Araz, Mariana Frank, … Özer Özdal

Download PDF
  • Open Access
  • Published: 30 January 2013

Scrutinizing the Higgs signal and background in the 2e2μ golden channel

  • Yi Chen1,
  • Nhan Tran2 &
  • Roberto Vega-Morales2,3 

Journal of High Energy Physics volume 2013, Article number: 182 (2013) Cite this article

  • 604 Accesses

  • 34 Citations

  • 4 Altmetric

  • Metrics details

Abstract

Kinematic distributions in the decays of the newly discovered resonance to four leptons are a powerful probe of the tensor structure of its couplings to electroweak gauge bosons. We present analytic calculations for both signal and background of the fully differential cross section for the ‘Golden Channel’ e + e − μ + μ − final state. We include all interference effects between intermediate gauge bosons and allow them to be on- or off-shell. For the signal we compute the fully differential decay width for general scalar couplings to ZZ,γγ,andZγ. For the background we compute the leading order fully differential cross section for q q annihilation into Z and γ gauge bosons, including the contribution from the resonant Z → 2e2μ process. We also present singly and doubly differential projections and study the interference effects on the differential spectra. These expressions can be used in a variety of ways to uncover the nature of the newly discovered resonance or any new scalars decaying to neutral gauge bosons which might be discovered in the future.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. Y. Gao, A.V. Gritsan, Z. Guo, K. Melnikov, M. Schulze, et al., Spin determination of single-produced resonances at hadron colliders, Phys. Rev. D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE].

    ADS  Google Scholar 

  4. A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev. D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE].

    ADS  Google Scholar 

  5. J.S. Gainer, K. Kumar, I. Low and R. Vega-Morales, Improving the sensitivity of Higgs boson searches in the golden channel, JHEP 11 (2011) 027 [arXiv:1108.2274] [INSPIRE].

    Article  ADS  Google Scholar 

  6. S. Bolognesi, Y. Gao, A.V. Gritsan, K. Melnikov, M. Schulze, et al., On the spin and parity of a single-produced resonance at the LHC, Phys. Rev. D 86 (2012) 095031 [arXiv:1208.4018] [INSPIRE].

    ADS  Google Scholar 

  7. R. Boughezal, T.J. LeCompte and F. Petriello, Single-variable asymmetries for measuring the ‘Higgs’ boson spin and CP properties, arXiv:1208.4311 [INSPIRE].

  8. D. Stolarski and R. Vega-Morales, Directly measuring the tensor structure of the scalar coupling to gauge bosons, Phys. Rev. D 86 (2012) 117504 [arXiv:1208.4840] [INSPIRE].

    ADS  Google Scholar 

  9. J. Gunion and Z. Kunszt, Lepton correlations in gauge boson pair production and decay, Phys. Rev. D 33 (1986) 665 [INSPIRE].

    ADS  Google Scholar 

  10. A. Soni and R. Xu, Probing CP-violation via Higgs decays to four leptons, Phys. Rev. D 48 (1993)5259 [hep-ph/9301225] [INSPIRE].

    ADS  Google Scholar 

  11. S. Choi, . Miller, D.J., M. Muhlleitner and P. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].

    ADS  Google Scholar 

  12. T. Matsuura and J. van der Bij, Characteristics of leptonic signals for Z boson pairs at hadron colliders, Z. Phys. C 51 (1991) 259 [INSPIRE].

    Google Scholar 

  13. C. Buszello, I. Fleck, P. Marquard and J. van der Bij, Prospective analysis of spin- and CP-sensitive variables in \( H\to ZZ\to l_1^{+}l_1^{-}l_2^{+}l_2^{-} \) at the LHC, Eur. Phys. J. C 32 (2004) 209 [hep-ph/0212396] [INSPIRE].

    Article  ADS  Google Scholar 

  14. F. Fiedler, A. Grohsjean, P. Haefner and P. Schieferdecker, The matrix element method and its application in measurements of the top quark mass, Nucl. Instrum. Meth. A 624 (2010) 203 [arXiv:1003.1316] [INSPIRE].

    ADS  Google Scholar 

  15. I. Volobouev, Matrix element method in HEP: transfer functions, efficiencies and likelihood normalization, arXiv:1101.2259 [INSPIRE].

  16. A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the standard model, arXiv:1207.6082 [INSPIRE].

  17. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5 : going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  18. P. Avery, D. Bourilkov, M. Chen, T. Cheng, A. Drozdetskiy, et al., Precision studies of the Higgs golden channel H → ZZ ∗ → 4l. Part I. Kinematic discriminants from leading order matrix elements, arXiv:1210.0896 [INSPIRE].

  19. J.M. Campbell, W.T. Giele and C. Williams, Extending the matrix element method to next-to-leading order, arXiv:1205.3434 [INSPIRE].

  20. J.M. Campbell, W.T. Giele and C. Williams, The matrix element method at next-to-leading order, JHEP 11 (2012) 043 [arXiv:1204.4424] [INSPIRE].

    Article  ADS  Google Scholar 

  21. K. Hagiwara, R. Peccei, D. Zeppenfeld and K. Hikasa, Probing the weak boson sector in e + e − → W + W −, Nucl. Phys. B 282 (1987) 253 [INSPIRE].

    Article  ADS  Google Scholar 

  22. Q.-H. Cao, C. Jackson, W.-Y. Keung, I. Low and J. Shu, The Higgs mechanism and loop-induced decays of a scalar into two Z bosons, Phys. Rev. D 81 (2010) 015010 [arXiv:0911.3398] [INSPIRE].

    ADS  Google Scholar 

  23. J.S. Gainer, W.-Y. Keung, I. Low and P. Schwaller, Looking for a light Higgs boson in the Zγ→ℓℓγ channel,Phys. Rev. D 86(2012)033010[arXiv:1112.1405][INSPIRE].

    ADS  Google Scholar 

  24. B. Coleppa, K. Kumar and H.E. Logan, Can the 126 GeV boson be a pseudoscalar?, Phys. Rev. D 86 (2012) 075022 [arXiv:1208.2692] [INSPIRE].

    ADS  Google Scholar 

  25. I. Low, J. Lykken and G. Shaughnessy, Have we observed the Higgs (imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].

    ADS  Google Scholar 

  26. B.A. Dobrescu and J.D. Lykken, Semileptonic decays of the standard Higgs boson, JHEP 04 (2010)083 [arXiv:0912.3543] [INSPIRE].

    Article  ADS  Google Scholar 

  27. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  28. N.D. Christensen and C. Duhr, FeynRules - Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].

    Article  ADS  Google Scholar 

  29. CMS collaboration, Observation of Z decays to four leptons with the CMS detector at the LHC, JHEP 12 (2012) 034 [arXiv:1210.3844] [INSPIRE].

    ADS  Google Scholar 

  30. C. Zecher, T. Matsuura and J. van der Bij, Leptonic signals from off-shell Z boson pairs at hadron colliders, Z. Phys. C 64 (1994) 219 [hep-ph/9404295] [INSPIRE].

    ADS  Google Scholar 

  31. T. Binoth, N. Kauer and P. Mertsch, Gluon-induced QCD corrections to \( pp\to ZZ\to l\overline{l}{l^{\prime }}{{\overline{l}}^{-}} \) -prime, arXiv:0807.0024 [INSPIRE].

  32. N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, JHEP 08 (2012) 116 [arXiv:1206.4803] [INSPIRE].

    Article  ADS  Google Scholar 

  33. M. Jamin and M.E. Lautenbacher, TRACER: version 1.1: a Mathematica package for gamma algebra in arbitrary dimensions, Comput. Phys. Commun. 74 (1993) 265 [INSPIRE].

    Article  ADS  Google Scholar 

  34. T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W + W − W Z and ZZ production in the POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE].

    Article  ADS  Google Scholar 

  35. P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].

    Article  ADS  Google Scholar 

  36. S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].

    Article  ADS  Google Scholar 

  37. S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].

    Article  ADS  Google Scholar 

  38. J. Pumplin, D. Stump, J. Huston, H. Lai, P.M. Nadolsky, et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Physics Department, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, 91125, U.S.A.

    Yi Chen

  2. Fermi National Accelerator Laboratory (FNAL), P.O. Box 500, Batavia, IL, 60510, U.S.A.

    Nhan Tran & Roberto Vega-Morales

  3. Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, U.S.A.

    Roberto Vega-Morales

Authors
  1. Yi Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Nhan Tran
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Roberto Vega-Morales
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Yi Chen or Roberto Vega-Morales.

Additional information

ArXiv ePrint: 1211.1959

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Chen, Y., Tran, N. & Vega-Morales, R. Scrutinizing the Higgs signal and background in the 2e2μ golden channel. J. High Energ. Phys. 2013, 182 (2013). https://doi.org/10.1007/JHEP01(2013)182

Download citation

  • Received: 26 November 2012

  • Accepted: 24 December 2012

  • Published: 30 January 2013

  • DOI: https://doi.org/10.1007/JHEP01(2013)182

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Higgs Physics
  • Standard Model
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.