Skip to main content
Log in

Model-independent limits for anomalous triple gauge bosons \(W^+W^-\gamma \) couplings at the CLIC

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, we investigate the potential of the \(\gamma \gamma \rightarrow W^+ W^-\), \(e^+ \gamma \rightarrow e^+ \gamma ^{*}\gamma \rightarrow e^+ W^- W^+\) and \(e^+ e^-\rightarrow e^+ \gamma ^{*} \gamma ^{*} e^-\rightarrow e^+ W^- W^+ e^-\) processes at the Compact Linear Collider (CLIC) operating in \(\gamma \gamma \), \(\gamma ^*\gamma \) and \(\gamma ^*\gamma ^*\) modes to probe the anomalous triple gauge bosons \(W^+W^-\gamma \) couplings. To identify the \(W^+W^-\) production in the final state, we consider the leptonic, semi-leptonic and hadronic decays channels. Based on future CLIC data, we assume \({{\mathcal {L}}}=1\,\mathrm{ab^{-1}}@ \sqrt{s}=0.380 \,\mathrm{TeV}\), \({{\mathcal {L}}}=2.5\,\mathrm{ab^{-1}}@ \sqrt{s}=1.5\,\mathrm{TeV}\), \({{\mathcal {L}}}=5 \,\mathrm{ab^{-1}}@ \sqrt{s}=3\,\mathrm{TeV}\) and \(\delta _{sys}=0\%, 5\%, 10\%, 15\%\) for our study. Using these data, the strongest limits expected with the \(\gamma \gamma \rightarrow W^+ W^-\), \(e^+ \gamma \rightarrow e^+ \gamma ^{*}\gamma \rightarrow e^+ W^- W^+\) and \(e^+ e^-\rightarrow e^+ \gamma ^{*} \gamma ^{*} e^-\rightarrow e^+ W^- W^+ e^-\) processes on the anomalous \(\Delta \kappa _\gamma \) and \(\lambda _\gamma \) couplings with \(\delta _{sys}=0\%\) at \(95\%\) C.L. are: \(\Delta \kappa _\gamma = \pm 0.00007\), \(\lambda _\gamma = [-0.00004, 0.00102]\), \(\Delta \kappa _\gamma = \pm 0.00015\), \(\lambda _\gamma = [-0.00013, 0.00340]\) and \(\Delta \kappa _\gamma = [-0.00048, 0.00049]\), \(\lambda _\gamma = [-0.00048, 0.00782]\). The bounds for \(\Delta \kappa _\gamma \) and \(\lambda _\gamma \) with \(\delta _{sys}=5\%, 10\%, 15\%\) are weaker with respect to the bounds obtained with \(\delta _{sys}=0\%\). These limits show potential sensitivity when compared with those from LHC and HL-LHC data and can be a very promising option to probe the anomalous \(W^+W^-\gamma \) couplings at the CLIC. In addition, a prominent advantage of these processes is that they isolate anomalous \(W^+W^-\gamma \) couplings, thus allowing the study of \(W^+W^-\gamma \) couplings independently from \(W^+W^-Z\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data are publicly released on a regular basis by Repositorio Institucional de la Universidad Autónoma de Zacatecas at http://ricaxcan.uaz.edu.mx/jspui.]

References

  1. J. de Blas, et al., The CLIC Potential for New Physics, CERN Yellow Reports: Monographs. arXiv:1812.02093 [hep-ph]

  2. P. Roloff, R. Franceschini, U. Schnoor, A. Wulzer, The Compact Linear \(e^+e^-\) Collider (CLIC): Physics Potential, Input to the European Particle Physics Strategy Update on behalf of the CLIC and CLICdp Collaborations. arXiv:1812.07986 [hep-ex]

  3. CLIC and CLICdp Collaborations, The Compact Linear \(e^+e^-\) Collider (CLIC)-2018 Summary Report, CERN Yellow Rep.Monogr., 1802, 1–98 (2018)

  4. A. Robson, P. N. Burrows, N. Catalan Lasheras, L. Linssen, M. Petric, D. Schulte, E. Sicking, S. Stapnes, W. Wuensch, [CLIC and CLICdp Collaborations], The Compact Linear \(e^+e^-\) Collider (CLIC): Accelerator and Detector, Input to the European Particle Physics Strategy Update on behalf of the CLIC and CLICdp Collaborations. arXiv:1812.07987 [physics.acc-ph]

  5. S.L. Glashow, Nucl. Phys. 22, 579 (1961)

    Article  Google Scholar 

  6. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967)

    Article  ADS  Google Scholar 

  7. A. Salam, in N. Svartholm (ed.) Elementary Particle Theory, p. 367. (Stockholm, Almquist and Wiksell, 1968)

  8. U. Baur, D. Zeppenfeld, Phys. Lett. B 201, 383 (1988)

    Article  ADS  Google Scholar 

  9. K. Hagiwara, R.D. Peccei, D. Zeppenfeld, K. Hikasa, Nucl. Phys. B 282, 253 (1987)

    Article  ADS  Google Scholar 

  10. K. Hagiwara, S. Ishihara, R. Szalapski, D. Zeppenfeld, Phys. Lett. B 283, 353 (1992)

    Article  ADS  Google Scholar 

  11. Satendra Kumar, Poulose Poulose, Int. J. Mod. Phys. A 30, 1550215 (2015)

    Article  ADS  Google Scholar 

  12. J.I. Aranda, F. Ramírez-Zavaleta, D.A. Rosete, F.J. Tlachino, J.J. Toscano, E.S. Tututi, J. Phys. G 41, 055003 (2014)

    Article  ADS  Google Scholar 

  13. M. Diehl, O. Nachtmann, Z. Phys. C 62, 397 (1994)

    Article  ADS  Google Scholar 

  14. I. Sahin, A.A. Billur, Phys. Rev. D 83, 035011 (2011)

    Article  ADS  Google Scholar 

  15. I.T. Cakir, O. Cakir, A. Senol, A.T. Tasci, Acta Physica Polonica B 45, 1947 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  16. S.M. Etesami, et al., Eur. Phys. J. C 76, 533 (2016)

  17. M. Aaboud et al., [ATLAS Collaboration]. Eur. Phys. J. C 77, 563 (2017)

  18. A.M. Sirunyan et al., [CMS Collaboration]. Phys. Lett. B 772, 21 (2017). arXiv:1703.06095 [hep-ex]

  19. T. Aaltonen et al., [CDF Collaboration]. Phys. Rev. Lett. 102, 242001 (2009)

  20. V.M. Abazov et al., [D0 Collaboration]. Phys. Lett. B 718, 451 (2012). arXiv:1208.5458 [hep-ex]

  21. S. Schael et al., [ALEPH, DELPHI, L3, OPAL Collaborations and LEP Electroweak Collaborations]. Phys. Rept. 532, 119 (2013). arXiv:1302.3415 [hep-ex]

  22. Ligong Bian, Jing Shu, Yongchao Zhang, JHEP 1509, 206 (2015)

    Article  ADS  Google Scholar 

  23. Ruibo Li, Xiao-Min Shen, Kai Wang, Xu Tao, Liangliang Zhang, Guohuai Zhu, Phys. Rev. D 97, 075043 (2018)

    Article  ADS  Google Scholar 

  24. M. Köksal, A. A. Billur, A. Gutiérrez-Rodríguez, M. A. Hernández-Ruíz, arXiv:1910.06747v1 [hep-ph]

  25. H. Baer, T. Barklow, K. Fujii, Y. Gao, A. Hoang, S. Kanemura, J. List, H.E. Logan et al., arXiv:1306.6352 [hep-ph]

  26. V. Ari, A.A. Billur, S.C. Inan, M. Köksal, Nucl. Phys. B 906, 211 (2016)

    Article  ADS  Google Scholar 

  27. S. Atag, I.T. Cakir, Phys. Rev. D 63, 033004 (2001)

    Article  ADS  Google Scholar 

  28. S. Atag, I. Sahin, Phys. Rev. D 64, 095002 (2001)

    Article  ADS  Google Scholar 

  29. B. Sahin, Phys. Scripta 79, 065101 (2009)

    Article  ADS  Google Scholar 

  30. J. Papavassiliou, K. Philippides, Phys. Rev. D 60, 113007 (1999)

    Article  ADS  Google Scholar 

  31. D. Choudhury, J. Kalinowski, A. Kulesza, Phys. Lett. B 457, 193 (1999)

    Article  ADS  Google Scholar 

  32. E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81, 074003 (2010)

    Article  ADS  Google Scholar 

  33. A. Gutiérrez-Rodríguez, M. Koksal, A.A. Billur, M.A. Hernández-Ruíz, J. Phys. G 47, 055005 (2020)

    Article  ADS  Google Scholar 

  34. M. Koksal, A.A. Billur, A. Gutiérrez-Rodríguez, M.A. Hernández-Ruíz, arXiv:1910.06747 [hep-ph]

  35. P. Agostini, et al., [LHeC Collaboration and FCC-he Study Group], arXiv:2007.14491 [hep-ex]

  36. D. d’Enterria, et al., PHOTON-2017 Conference Proceedings. arXiv:1812.08166

  37. I.F. Ginzburg, G.L. Kotkin, arXiv:1910.13961v2 [hep-ph]

  38. I.F. Ginzburg, G.L. Kotkin, V.G. Serbo, V.I. Telnov, Nucl. Instr. Methods 205, 47 (1983)

    Article  Google Scholar 

  39. I. Ginzburg, G. Kotkin, V. Serbo, V. Telnov, Pizma ZhETF 34, 514 (1981)

    Google Scholar 

  40. I. Ginzburg, G. Kotkin, V. Serbo, V. Telnov, JETP Lett. 34, 491 (1982)

    ADS  Google Scholar 

  41. I. Ginzburg, G. Kotkin, S. Panfil, V. Serbo, V. Telnov, Nucl. Instr. Meth. A 219, 5 (1984)

    Article  Google Scholar 

  42. V.I. Telnov, Nucl. Instrum. Meth. A 294, 72 (1990)

    Article  ADS  Google Scholar 

  43. Conceptual Design of a 500-GeV \(e^+e^-\) Linear Collider with Integrated X-Ray Laser Facility, Vol. 1-2. R. Brinkmann (ed.), G. Materlik (ed.), J. Rossbach (ed.), A. Wagner (ed.) (DESY) May 1997, 1183 pages; DESY-97-048, DESY-1997-048, ECFA-1997-182, ECFA-97-182

  44. R. Brinkmann et al., Nucl. Instr. Meth. A 406, 13 (1998)

    Article  ADS  Google Scholar 

  45. I. Watanabe, et al., JLC Design Study, KEK-REP-97-1, April 1997; KEK Report 97-17

  46. V. Telnov, Nucl. Instr. Meth. A 355, 3 (1995)

    Article  ADS  Google Scholar 

  47. V.M. Budnev, I.F. Ginzburg, G.V. Meledin, V.G. Serbo, Phys. Rep. 15, 181 (1975)

    Article  ADS  Google Scholar 

  48. G. Baur et al., Phys. Rep. 364, 359 (2002)

    Article  ADS  Google Scholar 

  49. K. Piotrzkowski, Phys. Rev. D 63, 071502 (2001)

    Article  ADS  Google Scholar 

  50. O.J.P. Eboli, M.B. Magro, P.G. Mercadante, S.F. Novaes, Phys. Rev. D 52, 15 (1995)

    Article  ADS  Google Scholar 

  51. W. Buchmuller, D. Wyler, Nucl. Phys. B 268, 621 (1986)

    Article  ADS  Google Scholar 

  52. B. Grzadkowski, M. Iskrzynski, M. Misiak, J. Rosiek, JHEP 1010, 085 (2010). arXiv:1008.4884

  53. C. Degrande, N. Greiner, W. Kilian, O. Mattelaer, H. Mebane et al., Annals Phys. 335, 21 (2013). arXiv:1205.4231

  54. K. Hagiwara, S. Ishihara, R. Szalapski, D. Zeppenfeld, Phys. Rev. D 48, 2182 (1993)

    Article  ADS  Google Scholar 

  55. K.J.F. Gaemers, G.J. Gournaris, Z. Phys. C 1, 259 (1979)

    Article  ADS  Google Scholar 

  56. A. De Rujula, M.B. Gavela, P. Hernandez, E. Masso, Nucl. Phys. B 384, 3 (1992)

    Article  ADS  Google Scholar 

  57. A. Abulencia et al., [CDF Collaboration]. Phys. Rev. Lett. 98, 112001 (2007)

  58. T. Aaltonen et al., [CDF Collaboration]. Phys. Rev. Lett. 102, 222002 (2009)

  59. S. Chatrchyan et al., [CMS Collaboration]. JHEP 1201, 052 (2012)

  60. S. Chatrchyan et al., [CMS Collaboration]. JHEP 1211, 080 (2012)

  61. V.M. Abazov et al., [D0 Collaboration]. Phys. Rev. D 88, 012005 (2013)

  62. S. Chatrchyan et al., [CMS Collaboration]. JHEP 07, 116 (2013)

  63. O.J.P. Eboli et al., Phys. Rev. D 47, 1889 (1993)

    Article  ADS  Google Scholar 

  64. Kingman Cheung, Phys. Rev. D 47, 3750 (1993)

    Article  ADS  Google Scholar 

  65. G. Moortgat-Pick, et al., SLAC-PUB-1087, CERN-PH-TH-2005-036, DESY-05-059, FERMILAB-PUB-05-060-T, IPPP-04-50, KEK-2005-16, PRL-TH-05-06, SHEP-05-03, hep-ph/0507011

  66. I.F. Ginzburg, arXiv:1508.06581 [hep-ph]

  67. A. Belyaev, N.D. Christensen, A. Pukhov, Comput. Phys. Commun. 184, 1729 (2013)

    Article  ADS  Google Scholar 

  68. C.M.S. Collaboration, Phys. Lett. B 695, 424 (2011)

    Article  ADS  Google Scholar 

  69. C.M.S. Collaboration, Eur. Phys. J. C 71, 1721 (2011)

    Article  ADS  Google Scholar 

  70. ATLAS Collaboration, Eur. Phys. J. C 71, 1577 (2011)

  71. ATLAS Collaboration, Eur. Phys. J. C 79, 884 (2019). arXiv:1905.04242 [hepex]

  72. C.M.S. Collaboration, JHEP 1904, 122 (2019). arXiv:1901.03428 [hepex]

    Google Scholar 

  73. Rafiqul Rahaman and Ritesh K. Singh, arXiv:1909.05496 [hep-ph]

  74. Anja Butter et al., JHEP 07, 152 (2016)

    Article  ADS  Google Scholar 

  75. G. Aad et al., JHEP 09, 029 (2016)

    Article  ADS  Google Scholar 

  76. C.M.S. Collaboration, Eur. Phys. J. C 73, 2283 (2013)

    Article  ADS  Google Scholar 

  77. ATLAS Collaboration. Phys. Rev. D 87, 112001 (2013)

  78. C.M.S. Collaboration. arXiv:1310.0473 [hep-ex]

  79. P. Calfayan, PoS EPS-HEP2019, 663 (2020) 663

  80. C.M.S. Collaboration, Eur. Phys. J. C 73, 2610 (2013)

    Article  ADS  Google Scholar 

  81. ATLAS Collaboration, JHEP 09, 029 (2016)

  82. R. Rahaman, arXiv:2007.07649

  83. R. Rahaman, R.K. Singh, Phy. Rev. D 101, 075044 (2020)

    Article  ADS  Google Scholar 

  84. S.Y. Choi, K. Hagiwara, M.S. Baek, Phys. Rev. D 54, 6703 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A. G. R. and M. A. H. R. acknowledge support from SNI and PROFEXCE (México).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gutiérrez-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Billur, A.A., Köksal, M., Gutiérrez-Rodríguez, A. et al. Model-independent limits for anomalous triple gauge bosons \(W^+W^-\gamma \) couplings at the CLIC. Eur. Phys. J. Plus 136, 697 (2021). https://doi.org/10.1140/epjp/s13360-021-01684-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01684-6

Navigation