Advertisement

Higgs bosons at 98 and 125 GeV at LEP and the LHC

  • Geneviève Bélanger
  • Ulrich Ellwanger
  • John F. GunionEmail author
  • Yun Jiang
  • Sabine Kraml
  • John H. Schwarz
Open Access
Article

Abstract

We discuss NMSSM scenarios in which the lightest Higgs boson h 1 is consistent with the small LEP excess at ~ 98 GeV in e + e Zh with \( h\to b\overline{b} \) and the heavier Higgs boson h 2 has the primary features of the LHC Higgs-like signals at 125 GeV, including an enhanced γγ rate. Verification or falsification of the 98 GeV h 1 may be possible at the LHC during the 14 TeV run. The detection of the other NMSSM Higgs bosons at the LHC and future colliders is also discussed, as well as dark matter properties of the scenario under consideration.

Keywords

Higgs Physics Beyond Standard Model 

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    CDF, D0 collaborations, T. Aaltonen et al., Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the Tevatron, Phys. Rev. Lett. 109 (2012) 071804 [arXiv:1207.6436] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M.S. Carena, S. Heinemeyer, C. Wagner and G. Weiglein, Suggestions for benchmark scenarios for MSSM Higgs boson searches at hadron colliders, Eur. Phys. J. C 26 (2003) 601 [hep-ph/0202167] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    U. Ellwanger and C. Hugonie, Higgs bosons near 125 GeV in the NMSSM with constraints at the GUT scale, Adv. High Energy Phys. 2012 (2012) 625389 [arXiv:1203.5048] [INSPIRE].Google Scholar
  8. [8]
    J.F. Gunion, Y. Jiang and S. Kraml, Could two NMSSM Higgs bosons be present near 125 GeV?, Phys. Rev. D 86 (2012) 071702 [arXiv:1207.1545] [INSPIRE].ADSGoogle Scholar
  9. [9]
    J. Cao, Z. Heng, J.M. Yang and J. Zhu, Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data, JHEP 10 (2012) 079 [arXiv:1207.3698] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    ALEPH, DELPHI, L3, OPAL, LEP Working Group for Higgs Boson Searches collaborations, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL collaborations, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].ADSGoogle Scholar
  12. [12]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: A Fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP 02 (2005) 066 [hep-ph/0406215] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    U. Ellwanger and C. Hugonie, NMHDECAY 2.0: An Updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290 [hep-ph/0508022] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  15. [15]
    NMSSMTools. Tools for the calculation of the higgs and sparticle spectrum in the NMSSM: NMHDECAY, NMSPEC and NMGMSB, http://www.th.u-psud.fr/NMHDECAY/nmssmtools.html.
  16. [16]
    New (g-2) collaboration, F. Gray, Measuring the muons anomalous magnetic moment to 0.14 ppm, J. Phys. Conf. Ser. 312 (2011) 102006 [arXiv:1009.0799] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J.F. Gunion, Y. Jiang and S. Kraml, The Constrained NMSSM and Higgs near 125 GeV, Phys. Lett. B 710 (2012) 454 [arXiv:1201.0982] [INSPIRE].ADSGoogle Scholar
  18. [18]
    C. Weniger, A Tentative Gamma-Ray Line from Dark Matter Annihilation at the Fermi Large Area Telescope, JCAP 08 (2012) 007 [arXiv:1204.2797] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    LAT collaboration, W. Atwood et al., The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission, Astrophys. J. 697 (2009) 1071 [arXiv:0902.1089] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    T. Bringmann, X. Huang, A. Ibarra, S. Vogl and C. Weniger, Fermi LAT Search for Internal Bremsstrahlung Signatures from Dark Matter Annihilation, JCAP 07 (2012) 054 [arXiv:1203.1312] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    D. Das, U. Ellwanger and P. Mitropoulos, A 130 GeV photon line from dark matter annihilation in the NMSSM, JCAP 08 (2012) 003 [arXiv:1206.2639] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    Y. Bai and J. Shelton, Gamma Lines without a Continuum: Thermal Models for the Fermi-LAT 130 GeV Gamma Line, JHEP 12 (2012) 056 [arXiv:1208.4100] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    T. Bringmann and C. Weniger, Gamma Ray Signals from Dark Matter: Concepts, Status and Prospects, Phys. Dark Univ. 1 (2012) 194 [arXiv:1208.5481] [INSPIRE].Google Scholar
  24. [24]
    CMS collaboration, Search for neutral Higgs bosons decaying to τ pairs in pp collisions at \( \sqrt{s}=7\;TeV \), Phys. Lett. B 713(2012)68[arXiv:1202.4083][INSPIRE].ADSGoogle Scholar
  25. [25]
    J. Gronberg, Photon Linear Collider Gamma-Gamma Summary, arXiv:1203.0031 [INSPIRE].
  26. [26]
    D.M. Asner, J.B. Gronberg and J.F. Gunion, Detecting and studying Higgs bosons at a photon-photon collider, Phys. Rev. D 67 (2003) 035009 [hep-ph/0110320] [INSPIRE].ADSGoogle Scholar
  27. [27]
    M.M. Velasco et al., Photon photon and electron photon colliders with energies below a TeV, eConf C 010630 (2001) E3005 [hep-ex/0111055] [INSPIRE].Google Scholar
  28. [28]
    D. Asner et al., Complementarity of a low-energy photon collider and LHC physics, hep-ph/0308103 [INSPIRE].

Copyright information

© SISSA 2013

Authors and Affiliations

  • Geneviève Bélanger
    • 1
  • Ulrich Ellwanger
    • 2
  • John F. Gunion
    • 3
    Email author
  • Yun Jiang
    • 3
  • Sabine Kraml
    • 4
  • John H. Schwarz
    • 5
  1. 1.LAPTH, Université de Savoie, CNRSAnnecy-le-Vieux CedexFrance
  2. 2.Laboratoire de Physique ThéoriqueUniversité Paris-Sud, Centre d’OrsayOrsay-CedexFrance
  3. 3.Department of PhysicsUniversity of CaliforniaDavisU.S.A
  4. 4.Laboratoire de Physique Subatomique et de Cosmologie, UJF Grenoble 1, CNRS/IN2P3, INPGGrenobleFrance
  5. 5.Department of PhysicsCalifornia Institute of TechnologyPasadenaU.S.A

Personalised recommendations