Skip to main content
Log in

Electron Behavior in the Downstream of an Electron Cyclotron Resonance Plasma Used for Chemical Vapor Deposition

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The electron behavior in the downstream of an electron cyclotron resonance (ECR) plasma used for chemical vapor deposition has been explored from the thickness fluctuation in the films prepared with a grid. The thickness fluctuation corresponds well to the distribution of the electron flux on the growing surface computed taking into account a correlation between the Larmor radii of electrons and a grid pattern. It is shown that electrons produced in the ECR plasma move along the magnetic field lines in the Larmor gyration and play a key role in the dissociation of a source gas not only in the gas phase but also on the growing swface to form films. The investigation of the thickness fluctuation enables us to estimate the electron temperature and the mean free path of electrons in the dowmtream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Matsuo and M. Kiuchi, Jpn. J. Appl. Phys. 22, L210 (1983).

    Article  Google Scholar 

  2. M. Kitagawa, K. Setsune, Y. Manabe, and T. Hirao, Jpn. J. Appl. Pl1ys. 27, 2026 (1988).

    Article  CAS  Google Scholar 

  3. K. Kobayashi, M. Hayama, S. Kawamoto, and H. Miki, Jpn. J. Appl. Phys. 26, 202 (1986).

    Article  Google Scholar 

  4. M. Zhang, Y. Nakayama, S. Nonoyama, and K. Wakita, J. Non-Cryst. Solids 164–166, 63 (1993).

    Article  Google Scholar 

  5. C. R. Eddy, Jr., E. A. Dobisz, C. A. Hoffman, and J. R. Meyer, Appl. Phys. Lett. 62, 2362 (1993).

    Article  CAS  Google Scholar 

  6. J. R. Flemish and R. L. Pfeffer, J. Appl. Phys. 74, 3277 (1993).

    Article  CAS  Google Scholar 

  7. P. K. Shuffiebotham and D. J. Thomson, Can. J. Phys. 69, 195 (1991).

    Article  Google Scholar 

  8. J. E. Stevens, Y. C. Huang, R. L. Jarecki, and J. L. Cecchi, J. Vac. Sci. Technol. A 10, 1270 (1992).

    Article  CAS  Google Scholar 

  9. S. M. Gorbatkin, L. A. Berry, and J. B. Roberto, J. Vac. Sci. Technol. A 8, 2893 (1990).

    Article  CAS  Google Scholar 

  10. Y. Weng and M. J. Kushner, J. Appl. Phys. 72, 33 (1992).

    Article  CAS  Google Scholar 

  11. S. C. Kuo, E. E. Kunhardt, and S. P. Kuo, J. Appl. Phys. 73, 4197 (1993).

    Article  Google Scholar 

  12. W. H. Koh, N. H. Choi, D. I. Choi, and Y. H. Oh, J. Appl. Phys. 73, 4205 (1993).

    Article  Google Scholar 

  13. Y. Nakayama, M. Kondoh, K. Hitsuishi, M. Zhang, and T. Kawamura, Appl. Phys. Lett. 57, 2297 (1990).

    Article  CAS  Google Scholar 

  14. S. Miyake, W. Chen, and T. Ariyasu, Jpn. J. Appl. Phys. 29, 2491 (1990).

    Article  CAS  Google Scholar 

  15. A. Matsuda, K. Nomoto, Y. Takeuchi, A. Suzuki, A. Yuuki, and J. Perrin, Surf. Sci. 227, 50 (1990).

    Article  CAS  Google Scholar 

  16. J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York (1968), p. 13.

    Google Scholar 

  17. Y. H. Lee, J. E. Heidenreich, III, and G. Fortuno, J. Vac. Sci. Technol. A 7, 903 (1989).

    Article  CAS  Google Scholar 

  18. H. Amemiya, K. Shimizu, S. Kato, and Y. Sakamoto, Jpn. J. Appl. Phys. 27, L927 (1988).

    Article  CAS  Google Scholar 

  19. M. D. Bowden, T. Okamoto, F. Kimura, H. Muta, K. Uchino, K. Muraoka, T. Sakoda, M. Maeda, Y. Manabe, M. Kitagawa, and T. Kimura, J. Appl. Phys. 73, 2732 (1993).

    Article  Google Scholar 

  20. J. P. M. Schmitt, J. Non-Opt. Solids 59–60, 649 (1983).

    Article  Google Scholar 

  21. S. Iizuka and N. Sato, J. Appl. Phys. 70, 4165 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Nonoyama, S. & Nakayama, Y. Electron Behavior in the Downstream of an Electron Cyclotron Resonance Plasma Used for Chemical Vapor Deposition. Plasma Chem Plasma Process 15, 409–426 (1995). https://doi.org/10.1007/BF03651415

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03651415

Key Words

Navigation