Skip to main content
Log in

Microbiological leaching of uranium ores

  • Bioleaching
  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

Microbiological leaching has been used as an alternative approach to conventional hydrometallurgical methods of uranium extraction. In the microbiological leaching process, iron-oxidizing bacteria oxidize pyritic phases to ferric iron and sulfuric acid, and uranium is solubilized from the ore due to sulfuric acid attack. If uranium in the ore material is in the reduced, tetravalent form (UIV), a redox reaction is involved whereby uranium is oxidized to the hexavalent form (UIV) upon dissolution. In acid-leaching systems, the primary oxidant is ferric iron, which is reduced to ferrous iron by its chemical reaction with UIV. The ferrous iron thus formed is reoxidized to ferric iron by iron-oxidizing bacteria such as Thiobacillus ferrooxidans and Leptospirillum ferrooxidans. Nutritional requirements and responses to environmental extremes of acidophilic iron-oxidizing bacteria are appraised. The S-entity in Fe-sulfides is oxidized to sulfate by bacteria similar to Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Pyrite and marcasite oxidation is a sulfuric acid forming reaction. Heap, dump and in situ leach techniques are feasible as bacterial leaching systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackman, T.E., and Kleinmann, R.L.P., 1984, “In-line aeration and treatment of acid mine drainage,” US Bureau of Mines, Report of Investigation 8868.

    Google Scholar 

  • Ahonen, L., and Tuovinen, O.H., 1994, “Solid-phase alteration and iron transformation in column bioleaching of a complex sulfide ore,” Environmental Geochemistry of Sulfide Oxidation, C.N. Alpers and D.W. Blowes, eds., American Chemical Society, Washington, D.C., pp. 79–89.

    Google Scholar 

  • Ahonen, L., and Tuovinen, O.H., 1995, “Bacterial leaching of complex sulfide ore samples in bench-scale column reactors,” Hydro-metallurgy, Vol. 37, pp. 1–21.

    Google Scholar 

  • Anonymous, 1979, “Solution mining of U3O8 at Agnew Lake is jeopardized by faulting in orebody,” Journal of Mining Engineering, Vol. 180, p. 52.

    Google Scholar 

  • Audsley, A., and Daborn, G.R., 1963, “Natural leaching of uranium ores. 2. A study of the experimental variables. 3. Application to specific ores,” Transactions of the Institution of Mining and Metallurgy, London, Vol. 72, pp. 235–254.

    Google Scholar 

  • Bailey, A.D., and Hansford, G.S., 1993, “Factors affecting bio-oxidation of sulfide minerals at high concentrations of solids,” Biotechnology and Bioengineering, Vol. 42, p. 1164–1174.

    Article  Google Scholar 

  • Barros, M.E., Rawlings, D.E., and Woods, D.R., 1985, “Cloning and expression of the Thiobacillus ferrooxidans glutamine synthetase gene in Escherichia coliJournal of Bacteriology, Vol. 164, pp. 1386–1389.

    Google Scholar 

  • Berthelot, D., Leduc, L.G., and Ferroni, G.D., 1993, “Temperature studies of iron-oxidizing autotrophs and acidophilic heterotrophs isolated from uranium mines,” Canadian Journal of Microbiology, Vol. 39, pp. 384–388.

    Article  Google Scholar 

  • Berthelot, D., Leduc, L.G., and Ferroni, G.D., 1994, “The absence of psychrophilic Thiobacillus ferrooxidans and acidophilic heterotrophic bacteria in cold, tailings effluents from a uranium mine,” Canadian Journal of Microbiology, Vol. 40, pp. 60–63.

    Article  Google Scholar 

  • Berthelot, D., Leduc, L.G., and Ferroni, G.D., 1997, “Iron-oxidizing autotrophs and acidophilic heterotrophs from uranium mine environments,” Geomicrobiology Journal, Vol. 14, pp. 317–324.

    Article  Google Scholar 

  • Bhatti, T.M., Bigham, J.M., Carlson, L., and Tuovinen, O.H., 1993, “Mineral products of pyrrhotite oxidation by Thiobacillus ferrooxidans,” Applied and Environmental Microbiology, Vol. 59, pp. 1984–1990.

    Google Scholar 

  • Bhatti, T.M., Vuorinen, A., Lehtinen, K.M., and Tuovinen, O.H., 1998, “Dissolution of uraninite in acid solutions,” Journal of Chemical Technology and Biotechnology, Vol. 73, pp. 259–263.

    Article  Google Scholar 

  • Bhatti, T.M., and Malik, K.A., 1997a, “Pilot-scale processing of 125 tones low-grade sandstone uranium ores by microbial heap leaching process,” Technical Report No. NIBGE-3/1997, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.

    Google Scholar 

  • Bhatti, T.M., and Malik, K.A., 1997b, “Acid and microbiological leaching of a sandstone uranium ore,” Biotechnology Comes of Age; Conference Proceedings of the International Biohydrometallurgy Symposium IBS′97, BIOMINE 97, Australian Mineral Foundation, Sydney, NSW, Australia, pp. PM4.1–PM4.2.

    Google Scholar 

  • Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.I., and Wolfe, M., 1996a, “Schwertmannite and the chemical modelling of iron in acid sulfate waters,” Geochimica et Cosmochimica Acta, Vol. 60, pp. 2111–2121.

    Article  Google Scholar 

  • Bigham, J.M., Schwertmann, U., and Pfab, G., 1996b, “Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage,” Applied Geochemistry, Vol. 11, pp. 845–849.

    Article  Google Scholar 

  • Blake, R.C., II, and Shute, E.A., 1987, “Respiratory enzymes of Thiobacillus ferrooxidans. A kinetic study of electron transfer between iron and rusticyanin in sulfate media,” Journal of Biological Chemistry, Vol. 262, pp. 14983–14989.

    Google Scholar 

  • Blake, R.C., II, Shute, E.A., Greenwood, M.M., Spencer, G.H., and Ingledew, W.J., 1993, “Enzymes of aerobic respiration on iron,” FEMS Microbiology Reviews, Vol. 11, pp. 9–18.

    Article  Google Scholar 

  • Blake, R.C., II, and Shute, E.A., 1994, “Respiratory enzymes of Thiobacillus ferrooxidans. Kinetic properties of an acid-stable iron:rusticyanin oxidoreductase,” Biochemistry, Vol. 33, pp. 9220–9228.

    Article  Google Scholar 

  • Bosecker, K., and Wirth, G., 1980, “Bacterial leaching of carbonate bearing uranium ore,” Biogeochemistry of Ancient and Modem Environments, P.A. Trudinger, M.R. Walter, and B.J. Ralph, eds., Australian Academy of Sciences, Canberra, Australia, pp. 557–562.

    Google Scholar 

  • Cameron, J., 1963, “Discussion on natural leaching of uranium ores,” Transactions of the Institution of Mining and Metallurgy, London, Vol. 72, p. 52.

    Google Scholar 

  • Chakravarty, L., Kittle, J.D., Jr., and Tuovinen, O.H., 1997, “Insertion sequence IS T3091 of Thiobacillus ferrooxidans,” Canadian Journal of Microbiology, Vol. 43, pp. 503–508.

    Article  Google Scholar 

  • Chutinara, D., Torma, A.E., and Singh, A.K., 1984, “Kinetics of sulfuric acid leaching of a uranium ore with oxone,” Metall, Vol. 38, pp. 121–126.

    Google Scholar 

  • Clark, D.A., and Norris, P.R, 1996, “Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species,” Microbiology, U.K., Vol. 142, pp. 785–780.

    Article  Google Scholar 

  • Dawes, I.W., 1999, “Stress response,” The metabolism and molecular physiology of Saccharomyces cervisiae, J.R. Dickinson and M. Schweizer, eds., Taylor & Francis, London, UK, pp. 277–326.

    Google Scholar 

  • Deane, S.M., and Rawlings, D.E., 1996, “Cloning and sequencing of the gene for the Thiobacillus ferrooxidans ATCC33020 glutamate synthase (GOGAT) small subunit and complementation of an Escherichia coli gltD mutant,” Gene, Vol. 177, pp. 261–263.

    Article  Google Scholar 

  • DiSpirito, A.A., and Tuovinen, O.H., 1981, “Oxygen uptake coupled with uranous sulphate oxidation by Thiobacillus ferrooxidans and Thiobacillus acidophilus,” Geomicrobiology Journal, Vol. 2, pp. 275–291.

    Article  Google Scholar 

  • DiSpirito, A.A., and Tuovinen, O.H., 1982a, “Uranous ion oxidation and carbon dioxide fixation by Thiobacillus ferrooxidans,” Archives of Microbiology, Vol. 133, pp. 28–32.

    Article  Google Scholar 

  • DiSpirito, A.A., and Tuovinen, O.H., 1982b, “Kinetics of uranous ion and ferrous iron oxidation by Thiobacillus ferrooxidans,” Archives of Microbiology, Vol. 133, pp. 33–37.

    Article  Google Scholar 

  • Drobner, E., Huber, H., Rachel, R., and Stetter, K.O., 1992, “Thiobacillus plumbophilus sp. nov., a novel galena and hydrogen oxidizer,” Archives of Microbiology, Vol. 157, pp. 213–217.

    Article  Google Scholar 

  • Duncan, D.W., and Bruynesteyn, A., 1971, “Enhancing bacterial activity in a uranium mine,” Canadian Institute of Mining and Metallurgy Bulletin, Vol. 64, pp. 32–36.

    Google Scholar 

  • Eligwe, C.A., and Torma, A.E., 1986, “Advances in the hydrogen peroxide leaching of uranium ores,” Metall, Vol. 40, pp. 491–496.

    Google Scholar 

  • Ferroni, G.D., Leduc, L.G., and Todd, M., 1986, “Isolation and temperature characteristics of psychrotrophic strains of Thiobacillus ferrooxidansirom the environment of a uranium ore,” Journal of General and Applied Microbiology, Vol. 32, pp. 169–175.

    Article  Google Scholar 

  • Glombitzal, F., Eckardt, L., Hummel, A., Loffler, R., Schreyer, J., Nindel, K., and Zimmermann, U., 1995, “Biological activity and water quality at flooding of the uranium mine ‘Konigstein’,” Biohydrometallurgical Processing, Vol. II, C.A. Jerez, T. Vargas, H. Toledo, and J.V. Wiertz, eds., Universidad de Chile, Santiago, Chile, pp. 315–322.

    Google Scholar 

  • Golovacheva, R. S., Golyshina, O.V., Karavaiko, G.I., Dorofeev, A.G., Pivovarova, T.A., and Chernykh, N.A., 1992, “A new iron-oxidizing bacterium, Leptospirillum thermoferrooxidans, sp. nov.,” Mikrobiologiya, Vol. 61, pp. 1056–1065.

    Google Scholar 

  • Goodman, A.E., Khalid, A.M., and Ralph, B.J., 1981a, “Microbial ecology of Rum Jungle. 1: Environmental study of sulfidic overburden dumps, experimental heap-leach piles and tailings dam area,” Australian Atomic Energy Commission Report No. AAECIE531, Lucas Heights, NSW, Australia.

    Google Scholar 

  • Goodman, A.E., Khalid, A.M., and Ralph, B.J., 1981b, “Microbial ecology of Rum Jungle. II: Environmental study of two flooded open cuts and smaller associated water bodies,” Australian Atomic Energy Commission Report No. AAEC/E57, Lucas Heights, NSW, Australia.

    Google Scholar 

  • Gow, W.A., McCreedy, H.H., Ritcey, G.M., McNamara, V.M., Harrison, V.F., and Lucas, B.H., 1971, “Bacteria-based processes for the treatment of low-grade uranium ore,” The Recovery of Uranium, International Atomic Energy Agency, Vienna, Austria, pp. 195–211.

    Google Scholar 

  • Haddadin, J., Dagot, C., and Fick, M., 1995, “Models of bacterial leaching,” Enzyme and Microbial Technology, Vol. 17, pp. 290–305.

    Article  Google Scholar 

  • Hallberg, K.B., and Lindström, E.B., 1994, “Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acido-phile,” Microbiology, U.K., Vol. 104, pp. 3451–3456.

    Article  Google Scholar 

  • Haque, K., and Ritcey, G.M., 1982, “Comparison of oxidants for the leaching of uranium ores in sulfuric acid,” Canadian Institute of Mining and Metallurgy Bulletin, Vol. 75, pp. 127–133.

    Google Scholar 

  • Hoffmann, M.R., Hiltunen, P., and Tuovinen, O.H., 1985, “Inhibition of ferrous ion oxidation by Thiobacillus ferrooxidans in the presence of oxyanions of sulfur and phosphorus,” Processing and Utilization of High Sulfur Coals, Y.A. Attia, ed., Elsevier, Amsterdam, pp. 683–698.

    Google Scholar 

  • Holmes, D.S., Jedlicki, E., Cabrejos, M.E., Bueno, S., Guacucano, M., Inostroza, C., Levican, G., Varela, P., and Garcia, E., 1999, “The use of insertion sequences to analyse gene function in Thiobacillus ferrooxidans: a case study involving cytochrome c-type biogenesis proteins in iron oxidation,” Biohydrometallurgy and the Environment Toward the Mining of the 21st Century, Part B, Molecular Biology, Biosorption, Bioremediation, R. Amils and A. Ballester, eds., Elsevier, Amsterdam, pp. 139–147.

    Google Scholar 

  • Hubert, W.A., Leduc, L.G., and Ferroni, G.D., 1995, “Heat and cold shock responses in different strains of Thiobacillus ferrooxidans,” Current Microbiology, Vol. 31, pp. 10–14.

    Article  Google Scholar 

  • Ivarson, K.C, 1980, “Enhancement of uranous-ion oxidation by Thiobacillus ferrooxidans,” Current Microbiology, Vol. 3, pp. 253–254.

    Article  Google Scholar 

  • Jaworska, M., and Urbanek, A. 1997, “The influence of carbon dioxide concentration in liquid medium on elemental sulphur oxidation by Thiobacillus thiooxidans,” Bioprocessing Engineering, Vol. 16, pp. 361–365.

    Google Scholar 

  • Jensen, A.B., and Webb, C., 1995, “Ferrous sulphate oxidation using Thiobacillus ferrooxidans: a review,” Process Biochemistry, Vol. 30, pp. 225–236.

    Article  Google Scholar 

  • Jerez, C.A., Seeger, M., and Amaro, A.M., 1992, “Phosphate starvation affects the synthesis of outer membrane proteins in Thiobacillus ferrooxidans,” FEMS Microbiology Letters, Vol. 98, pp. 29–34.

    Article  Google Scholar 

  • Johnson, D.B., 1995, “Mineral cycling by microorganisms: iron bacteria,” Microbial Diversity and Ecosystem Function, D. Allsopp, R.R. Colwell and D.L. Hawksmith, eds., CAB International, Wallingford, U.K., pp. 137–159.

    Google Scholar 

  • Johnson, D.B., and Roberto, F.F., 1997, “Heterotrophic acidophiles and their roles in the bioleaching of sulfide minerals,” Biomining: Theory, Microbes and Industrial Processes, D.E. Rawlings, ed., Springer-Verlag, Heidelberg, pp. 259–279.

    Chapter  Google Scholar 

  • Kai, M., Yano, T., Tamegai, H., Fukumori, Y., and Yamanaka, T., 1992, “Thiobacillus ferrooxidans cytochrome c oxidase: purification, and molecular and enzymatic features,” Journal of Biochemistry, Tokyo, Vol. 112, pp. 816–821.

    Article  Google Scholar 

  • Karamanev, D.G., 1991, “Model of biofilm structure of Thiobacillus ferrooxidans,” Journal of Biotechnology, Vol. 20, pp. 51–64.

    Article  Google Scholar 

  • Kelley, B.C., and Tuovinen, O.H., 1988, “Microbiological oxidations of minerals in mine tailings,” Chemistry and Biology of Solid Waste: Degraded Materials and Mine Tailings, W. Salomons and U. Förstner, eds., Springer-Verlag, Berlin, pp. 33–53.

    Chapter  Google Scholar 

  • Kilkenny, C.A., Berger, D.K., and Rawlings, D.E., 1994, “Isolation of Thiobacillus ferrooxidans ntrBC genes using a T. ferrooxidans nifH-lacZ fusion,” Microbiology, U.K., Vol. 140, pp. 2543–2453.

    Article  Google Scholar 

  • Kishimoto, N., Kosako, Y., Wakao, N., Tano, T., and Hiraishi, A., 1995, “Transfer of Acidiphilium facilis and Acidiphilium aminolytica to the genus Acidocella gen. nov., and emendation of the genus Acidiphilium,” Systematic and Applied Microbiology, Vol. 18, pp. 85–91.

    Article  Google Scholar 

  • Kovalenko, T.V., Karavaiko, G.I., and Piskunov, V.P., 1982, “Effect of Fe3+ ions in the oxidation of ferrous iron by Thiobacillus ferrooxidans at various temperatures,” Mikrobiologiya, Vol. 50, pp. 231–236.

    Google Scholar 

  • Langdahl, B.R., and Ingvorsen, K., 1997, “Temperature characteristics of bacterial iron solubilisation and 14C assimilation in naturally exposed sulfide ore material at Citronen Fjord, North Greenland (83°N),” FEMS Microbiology Ecology, Vol. 23, pp. 275–283.

    Article  Google Scholar 

  • Lawes, B.C., 1978, “The effect of sodium silicate on leaching of uranium ores with hydrogen peroxide,” In-Situ, Vol. 2, pp. 75–79.

    Google Scholar 

  • Livesey-Goldblatt, E.P., Tunley, T.H., and Nagy, I.F., 1977, “Pilot plant bacterial film oxidation (BACFOX process) of recycled acidified uranium plant ferrous sulphate leach solution,” Bacterial Leaching, W. Schwartz, ed., Verlag Chemie, Weinheim, pp. 175–190.

    Google Scholar 

  • Lowson, R.T., 1975, “Bacterial leaching of uranium ores — a review,” Australian Atomic Energy Commission’s Publication AAEC/E356, Lucas Heights, NSW, Australia.

    Google Scholar 

  • MacGregor, R.A., 1969, “Uranium dividends from bacterial leaching,” Journal of Mining Engineering, Vol. 21, p. 54.

    Google Scholar 

  • MacGregor, R.A., 1966, “Recovery of U3O8 by underground leaching,” CIM Bulletin, Vol. 59, pp. 583–587.

    Google Scholar 

  • Mahmood, T., 1994, “Bacterial heap leaching studies of low-grade ores from Siwalik sandstone ore deposits, Sulaiman Range, Pakistan,” Ph.D. Thesis, University of the Punjab, Lahore, Pakistan.

    Google Scholar 

  • Marchbank, A., 1987, “Update on uranium leaching at Denison Mines,” Proceedings of the 4th Annual General Meeting of BIOMINET, R.G.L. McCready, ed., CANMET Special Publication No. SP87-10, Canadian Government Publication Centre, Ottawa, Ontario, pp. 3–18.

    Google Scholar 

  • Martin, P.A.W., Dugan, P.R., and Tuovinen, O.H., 1983, “Uranium resistance of Thiobacillus ferrooxidans,” European Journal of Applied Microbiology and Biotechnology, Vol. 18, pp. 392–395.

    Article  Google Scholar 

  • Mattus, A.J., Jr., and Torma, A.E., 1980, “Uranium extraction from a low-grade ore by acidic leachants,” Metall, Vol. 34, pp. 33–36.

    Google Scholar 

  • McCready, R.G.L., Waiden, D., and Marchbank, A., 1986, “Nutrient requirement for the in-place leaching of uranium by Thiobacillus ferrooxidans,” Hydrometallurgy, Vol. 17, pp. 61–71.

    Article  Google Scholar 

  • McCready, R.G.L., and Gould, W.D., 1990, “Bioleaching of uranium,” Microbial Mineral Recovery, H.L. Ehrlich, and C.L Brierley, eds., McGraw-Hill, NY, pp. 107–125.

    Google Scholar 

  • Merritt, R.C., 1971, The Extractive Metallurgy of Uranium, Colorado School of Mines Research Institute, Golden, CO.

    Google Scholar 

  • Miller, R.P., Napier, E., and Wells, R.A., 1963, “Natural leaching of uranium ores. 1. Preliminary tests on Portuguese ores,” Transactions of the Institution of Mining and Metallurgy, London, Vol. 72, pp. 217–234.

    Google Scholar 

  • Modak, J.M., Natarajan, K.A., and Mukhopadhyay, S., 1996, “Development of temperature-tolerant strains of Thiobacillus ferrooxidans to improve bioleaching kinetics,” Hydrometallurgy, Vol. 42, pp. 51–61.

    Article  Google Scholar 

  • Muhoz, J.A., Gonzalez, F., Blâzquez, M.I., and Ballester, A., 1995, “A study of a Spanish uranium ore. Part I. A review of the bacterial leaching in the treatment of uranium ores,” Hydrometallurgy, Vol. 38, pp. 39–57.

    Article  Google Scholar 

  • Murr, L.E., and Brierley, J.A., 1978, “The use of large scale facilities in studies of the role of microorganisms in commercial leaching operations,” Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena, L.E. Murr, A. E. Torma, and J.A. Brierley, eds., Academic Press, NY, pp. 491–520.

    Chapter  Google Scholar 

  • Naden, D., Rowden, G.A., Lunt, D.J., and Wilson, D., 1985, “Development and application of solvent extraction, ion exchange (RIP) and liquid membrane processes for uranium recovery,” Advances in Uranium Ore Processing and Recovery From Non-Conventional Resources, IAEA-TC-491/4, International Atomic Energy Agency, Vienna, Austria, pp. 53–72.

    Google Scholar 

  • Niemelä, S.I., Sivelä, C., Luoma, T., and Tuovinen, O.H., 1994, “Maximum temperature limits for acidophilic, mesophilic bacteria in biological leaching systems,” Applied and Environmental Microbiology, Vol. 50, pp. 3444–3446.

    Google Scholar 

  • Norris, P.R., Clark, D.A., Owen, J.P., and Waterhouse, S., 1996, “Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria,” Microbiology, U.K., Vol. 142, pp. 775–783.

    Article  Google Scholar 

  • Norris, P.R., Murrell, J.C, and Hinson, D., 1995, “The potential for diazotrophy in iron- and sulfur-oxidizing acidophilic bacteria,” Archives of Microbiology, Vol. 164, pp. 294–300.

    Article  Google Scholar 

  • Norris, P.R., 1997, “Thermophiles and bioleaching”, Biomining: Theory, Microbes and Industrial Processes, D.E. Rawlings, ed., Springer Verlag, Heidelberg, pp. 247–258.

    Chapter  Google Scholar 

  • Norris, P.R., and Johnson, D.B., 1998, “Acidophilic microorganisms,” Extremophiles: Life in Extreme Environments, K. Horikoshi and W.D. Grant, eds., Wiley-Liss, NY, pp. 133–153.

    Google Scholar 

  • Pourbaix, M., 1966, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, London.

    Google Scholar 

  • Pretorius, I.M., Rawlings, D.E., and Woods, D.R., 1986, “Identification and cloning of Thiobacillus ferrooxidans structural nif genes in Escherichia coli,” Gene, Vol. 45, pp. 59–65.

    Article  Google Scholar 

  • Pretorius, I.M., Rawlings, D.E., O’Neill, E.G., Jones, W.A., Kirby, R., and Woods, D.R., 1987, “Nucleotide sequence of the gene encoding the nitrogenase iron protein of Thiobacillus ferrooxidans,” Journal of Bacteriology, Vol. 169, pp. 367–370.

    Article  Google Scholar 

  • Pronk, J.T., Liem, K., de Bruyn, U.C., and Kuenen, J.G., 1991, “Energy transduction by anaerobic ferric iron respiration in Thiobacillus ferrooxidans,” Applied and Environmental Microbiology, Vol. 57, pp. 2063–2068.

    Google Scholar 

  • Pronk, J.T., de Bruyn, J.C., Bos, P., and Kuenen, J.G., 1992, “Anaerobic growth of Thiobacillus ferrooxidans,” Applied and Environmental Microbiology, Vol. 58, pp. 2227–2230.

    Google Scholar 

  • Pronk, J.T., and Johnson, D.B., 1993, “Oxidation and reduction of iron by acidophilic bacteria,” Geomicrobiology Journal, Vol. 10, pp. 153–171.

    Article  Google Scholar 

  • Rawlings, D.E., 1988, “Sequence and structural analysis of the α-and β-dinitrogenasesubunitsof Thiobacillus ferrooxidans,” Gene, Vol. 69, pp. 337–343.

    Article  Google Scholar 

  • Rawlings, D.E., 1999, “The molecular genetics of mesophilic, acidophilic, chemolithotrophic, iron or sulfur-oxidizing microorganisms,” Biohydrometallurgy and the Environment Toward the Mining of the 21st Century, PartB, Molecular Biology, Biosorption, Bioremediation, R. Amils and A. Ballaster, eds., Elsevier, Amsterdam, pp. 3–20.

    Google Scholar 

  • Rawlings, D.E., Jones, W.A., O’Neill, E.G., and Woods, D.R., 1987, “Nucleotide sequence of the glutamine synthetase gene and its controlling region from the acidophilic autotroph Thiobacillus ferrooxidans,” Gene, Vol. 53, pp. 211–217.

    Article  Google Scholar 

  • Rawlings, D.E., and Kusano, T., 1994, “Molecular genetics of Thiobacillus ferrooxidans,” Microbiological Reviews, Vol. 58, pp. 39–55.

    Google Scholar 

  • Rawlings, D.E., Tributsch, H., and Hansford, G.S., 1999, “Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores,” Microbiology, U.K., Vol. 145, pp. 5–13.

    Article  Google Scholar 

  • Sankaran, R.N., 1985, “Biogenic uranium fractionation,” Transactions of the Indian Institute of Metals, Vol. 38, pp. 76–77.

    Google Scholar 

  • Sankaran, R.N., Yadava, R.S., Sen, D.B., Kulshrestha, S.C., Mohanty, K.B., and Singh, J., 1996, “Leachable U and Au in an Indian schistose quartzite,” Hydrometallurgy, Vol. 43, pp. 387–389.

    Article  Google Scholar 

  • Schippers, A., Hallmann, R., Wentzein, S., and Sand, W., 1995, “Microbial diversity in uranium mine waste heaps,” Applied and Environmental Microbiology, Vol. 61, pp. 2930–2935.

    Google Scholar 

  • Silver, M., and Dinardo, O., 1981, “Factors affecting oxidation of thiosalts by thiobacilli,” Applied and Environmental Microbiology, Vol. 41, pp. 1301–1309.

    Google Scholar 

  • Silver, M., 1985a, “Water leaching characteristics of uranium tailings from Ontario and northern Saskatchewan,” Hydrometallurgy, Vol. 14, pp. 189–217.

    Article  Google Scholar 

  • Silver, M., 1985b, “Parameters for the operation of bacterial thiosalt oxidation ponds,” Applied and Environmental Microbiology, Vol. 50, pp. 663–669.

    Google Scholar 

  • Silver, M., 1987, “Distribution of iron-oxidizing bacteria in the Nordic uranium tailings deposit, Elliot Lake, Ontario, Canada,” Applied and Environmental Microbiology, Vol. 53, pp. 846–852.

    Google Scholar 

  • Soljanto, P., and Tuovinen, O.H., 1980, “A micro-calorimetric study of U(IV) oxidation by Thiobacillus ferrooxidans and ferric-iron,” Biogeochemistry of Ancient and Modern Environments, P.A. Trudinger, M.R. Walter and B.J. Ralph, eds., Australian Academy of Science, Canberra, Australia, pp. 469–475.

    Google Scholar 

  • Sugio, T., Mizanashi, W., Magaki, K., and Tano, T., 1987, “Purification and some properties of sulfur:ferric iron oxidoreductase from Thiobacillus ferrooxidans,” Journal of Bacteriology, Vol. 169, pp. 4916–4922.

    Article  Google Scholar 

  • Sugio, T., Katagiri, T., Inagaki, K., and Tano, T., 1989, “Actual substrate for elemental sulfur oxidation by sulfur:ferric iron oxidoreductase purified from Thiobacillus ferrooxidans,” Biochimica et Biophysica Acta, Vol. 973, pp. 250–256.

    Article  Google Scholar 

  • Sugio, T., White, K.J., Shute, E., Choate, D., and Blake, R.C., II, 1992, “Existence of a hydrogen sulfide:ferric iron oxidoreductase in iron-oxidizing bacteria,” Applied and Environmental Microbiology, Vol. 58, pp. 431–433.

    Google Scholar 

  • Sugio, T., Takai, M., and Tano, T., 1993, “Isolation and properties of a moderately thermophilic iron-oxidizing bacterium,” Bioscience, Biotechnology, and Biochemistry, Vol. 57, pp. 1660–1662.

    Article  Google Scholar 

  • Sugio, T., Kishimoto, K., Takai, M., Oda, K., and Tano, T., 1995, “Growth of moderately thermophilic iron-oxidizing bacterium strain TI-1 in synthetic medium,” Journal of Fermentation and Bioengineering, Vol. 79, pp. 290–293.

    Article  Google Scholar 

  • Tomizuka, N., and Takahara, Y., 1972, “Bacterial leaching of uranium from Ningyo-Toge ores,” Fermentation Technology Today, Proceedings of the 4th International Fermentation Symposium, G. Temi, ed., Society for Fermentation Technology, Osaka, Japan, pp. 513–520.

    Google Scholar 

  • Torma, A.E., 1986, “Biotechnology as an emerging technology,” Biotechnology and Bioengineering Symposium, Vol. 16, pp. 49–63.

    Google Scholar 

  • Torma, A.E., 1987, “Impact of biotechnology on metal extractions,” Mineral Processing and Extractive Metallurgy Reviews, Vol. 2, pp. 289–330.

    Article  Google Scholar 

  • Tuovinen, O.H., and Kelly, D.P., 1974, “Studies on the growth of Thiobacillus ferrooxidans. II. Toxicity of uranium growing cultures and tolerance conferred by mutation, other metal cations and EDTA,” Archives of Microbiology, Vol. 95, pp. 153–169.

    Article  Google Scholar 

  • Tuovinen, O.H., Martin, P.A.W., Dugan, P.R., and Silver, M., 1981, “The Agnew Lake uranium mine leach liquors: Chemical examinations, bacterial enumeration and composition of plasmid DNA of iron-oxidizing thiobacilli,” Proceedings of International Conference on Use of Microorganisms in Hydrometallurgy, Hungarian Academy of Sciences, Pecs, pp. 59–69.

    Google Scholar 

  • Tuovinen, O.H., 1986, “Acid leaching of uranium ore material with microbial catalysis,” Biotechnology and Bioengineering Symposium, Vol. 16, pp. 65–72.

    Google Scholar 

  • Tuovinen, O.H., 1990, “Biological fundamentals of mineral leaching processes,” Microbial Mineral Recovery, H.L. Ehrlich and C.L. Brierley, eds., McGraw-Hill, NY, pp. 55–77.

    Google Scholar 

  • Varela, P., Levican, G., Rivera, F., and Jerez, C.A., 1998. “An immunological strategy to monitor in situ the phosphate starvation state in Thiobacillus ferrooxidans,” Applied and Environmental Microbiology, Vol. 64, pp. 4990–4993.

    Google Scholar 

  • Varela, P., and Jerez, C.A., 1992, “Identification of GroEL and DnaK homologues in Thiobacillus ferrooxidans,” FEMS Microbiology Letters, Vol. 98, pp. 149–154.

    Article  Google Scholar 

  • Wadden, D.A., and Gallant, A., 1985, “The in-place leaching of uranium at Denison Mines,” Canadian Metallurgical Quarterly, Vol. 24, pp. 127–134.

    Article  Google Scholar 

  • Wanner, B.L., 1998, “Phosphate signaling and the control of gene expression in Escherichia coli,” Metal Ions in Gene Regulation, S. Silver and W. Waiden, eds., Chapman & Hall, NY, pp. 104–128.

    Chapter  Google Scholar 

  • Yamanaka, T., and Fukumori, Y., 1995, “Molecular aspects of the electron transfer system which participates in the oxidation of ferrous ion by Thiobacillus ferrooxidans,” FEMS Microbiology Reviews, Vol. 17, pp. 401–413.

    Article  Google Scholar 

  • Yura, T., Nagai, H., and Mori, H., 1993, “Regulation of heat-shock response in bacteria,” Annual Review of Microbiology, Vol. 47, pp. 321–350.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuovinen, O.H., Bhatti, T.M. Microbiological leaching of uranium ores. Mining, Metallurgy & Exploration 16, 51–60 (1999). https://doi.org/10.1007/BF03403234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03403234

Key words

Navigation