Skip to main content
Log in

The potential for diazotrophy in iron-and sulfur-oxidizing acidophilic bacteria

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Acetylene reduction was observed with ferrousiron-oxidizingThiobacillus ferrooxidans, as expected from previous studies with this bacterium. Acetylene reduction was also found during the growth ofT. ferrooxidans on tetrathionate. OnlyLeptospirillum ferrooxidans, one of several other phylogenetically diverse, ferrous-iron-and/or sulfur-oxidizing acidophilic microorganisms, also reduced acetylene. A reduction of the oxygen concentration in the culture atmosphere was necessary to alleviate inhibition of nitrogenase activity. DNA sequences homologous tonif structural genes were found in both organisms. Diazotrophic growth ofL. ferrooxidans was inferred from an increase in iron oxidation in ammonium-free medium when the oxygen concentration was limited and from apparent inhibition by acetylene under these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balashova VV, Vedinina I YA, Markosyan GE, Zavarzin GA (1974) The autotrophic growth ofLeptospirillum ferrooxidans. Microbiology 43:491–494

    Google Scholar 

  • Belay N, Sparling R, Daniels L (1984) Dinitrogen fixation by a thermophilic methanogenic bacterium. Nature 312:286–288

    Article  PubMed  CAS  Google Scholar 

  • Bogdahn M, Kleiner D (1986) N2 fixation and NH4 + assimilation in the thermophilic anaerobesClostridium thermosaccharolyticum andClostridium thermoautotrophicum. Arch Microbiol 144:102–104

    Article  PubMed  CAS  Google Scholar 

  • Brouzes R, Knowles R (1971) Inhibition ofClostridium pasteurianum by acetylene: implication for nitrogen fixation assay. Can J Microbiol 17:1483–1489

    Article  PubMed  CAS  Google Scholar 

  • Cannon FC, Riedel GE, Ausubel FM (1979) Overlapping sequences ofKlebsiella pneumoniae nif DNA cloned and characterized. Mol Gen Genet 174:59–66

    Article  PubMed  CAS  Google Scholar 

  • Dalton H (1980) Chemoautotrophic nitrogen fixation. In: Stewart WDP, Gallon JR (eds) Nitrogen fixation. Academic Press, London, pp 177–195

    Google Scholar 

  • Eccleston M, Kelly DP, Wood AP (1985) Autotrophic growth and iron oxidation and inhibition kinetics ofLeptospirillum ferrooxidans. In: Caldwell DE, Brierley JA, Brierley CL (eds) Planetary ecology. Van Nostrand, New York, pp 263–272

    Google Scholar 

  • Hallberg KB, Lindström EB (1994) Characterization ofThiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology 140:3451–3456

    Article  PubMed  CAS  Google Scholar 

  • Harrison AP Jr (1982) Genomic and physiological diversity amongst strains ofThiobacillus ferrooxidans and genomic comparison withThiobacillus thiooxidans. Arch Microbiol 131:68–76

    Article  Google Scholar 

  • Holden PJ (1991) Identification of structuralnif genes in an ironoxidising moderate thermophile, FEMS Microbiol Lett 83: 7–10

    Article  CAS  Google Scholar 

  • Huber G, Stetter KO (1991)Sulfolobus metallicus, sp. nov., a novel strictly chemolithoautotrophic thermophilic archaeal species of metal-mobilizers. Arch Microbiol 14:372–378

    CAS  Google Scholar 

  • Karavaiko GI, Golovacheva RS, Pivovarova TA, Tzaplina IA, Vartanjan NS (1988) Thermophilic bacteria of the genusSulfolobus. In: Norris PR, Kelly DP (eds) Biohydrometallurgy. Proceedings of the international symposium. Science and Technology Letters, Kew, pp 29–41

  • Kelly DP, Jones CA (1978) Factors affecting metabolism and ferrous iron oxidation in suspensions and batch cultures ofThiobacillus ferrooxidans: relevance to ferric iron leach solution regeneration. In: Murr LE, Torma AE, Brierley JA (eds) Metallurgical applications and related microbiological phenomena. Academic Press, New York, pp 19–44

    Google Scholar 

  • Lane DJ, Harrison AP Jr, Stahl D, Pace B, Giovannoni SJ, Olsen GJ, Pace NR (1992) Evolutionary relationships among sulfurand iron-oxidizing eubacteria. J Bacteriol 174:269–278

    PubMed  CAS  Google Scholar 

  • Mackintosh ME (1978) Nitrogen fixation byThiobacillus ferrooxidans. J Gen Microbiol 105:215–218

    CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • Marsh RM, Norris PR (1983) The isolation of some thermophilic, autotrophic, iron-and sulphur-oxidizing bacteria. FEMS Microbiol Lett 17:311–315

    Article  Google Scholar 

  • Murrell JC, Dalton H (1983) Nitrogen fixation in obligate methanotrophs. J Gen Microbiol 129:3481–3486

    CAS  Google Scholar 

  • Nixon A, Norris PR (1992) Autotrophic growth and inorganic sulphur compound oxidation bySulfolobus sp. in chemostat culture. Arch Microbiol 157:155–160

    CAS  Google Scholar 

  • Norris PR (1983) Iron and mineral oxidation withLeptospirillum-like bacteria. In: Rossi G, Torma AE (eds) Recent progress in biohydrometallurgy. Associazione Mineraria Sarda, Iglesias, pp 83–96

    Google Scholar 

  • Norris PR (1990) Acidophilic bacteria and their activity in mineral sulfide oxidation. In: Ehrlich HL, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 3–27

    Google Scholar 

  • Norris PR, Barr DW (1985) Growth and iron oxidation by acidophilic moderate thermophiles. FEMS Microbiol Lett 28: 221–224

    Article  CAS  Google Scholar 

  • Norris PR, Marsh RM, Lindström EB (1986) Growth of mesophilic and thermophilic acidophilic bacteria on sulfur and tetrathionate. Biotechnol Appl Biochem 8:318–329

    CAS  Google Scholar 

  • Oakley CJ, Murrell JC (1988)nifH genes in the obligate methaneoxidizing bacteria. FEMS Microbiol Lett 49:53–57

    Article  Google Scholar 

  • Possot O, Henry M, Sibold L (1986) Distribution of DNA sequences homologous tonifH among archaebacteria, FEMS Microbiol Lett 34:173–177

    Article  CAS  Google Scholar 

  • Pretorius IM, Rawlings DE, Woods DR (1986) Identification and cloning ofThiobacillus ferrooxidans structuralnif genes inEscherichia coli. Gene 45:59–65

    Article  PubMed  CAS  Google Scholar 

  • Pretorius IM, Rawlings DE, O’Neill EG, Jones WA, Kirby R, Woods DR (1987) Nucleotide sequence of the gene encoding the nitrogenase iron protein ofThiobacillus ferrooxidans. J Bacteriol 169:367–370

    PubMed  CAS  Google Scholar 

  • Rawlings DE (1988) Sequence and structural analysis of the α-and β-dinitrogenase subunits ofThiobacillus ferrooxidans. Gene 69:337–343

    Article  PubMed  CAS  Google Scholar 

  • Rawlings DE, Kusano T (1994) Molecular genetics ofThiobacillus ferrooxidans. Microbiol Rev 58:39–55

    PubMed  CAS  Google Scholar 

  • Sand W, Rohde K, Sobotke B, Zenneck C (1992) Evaluation ofLeptospirillum ferrooxidans for leaching. Appl Environ Microbiol 58:85–92

    PubMed  CAS  Google Scholar 

  • Stevens CJ, Dugan PR, Tuovinen OH (1986) Acetylene reduction (nitrogen fixation) byThiobacillus ferrooxidans. Biotechnol Appl Biochem 8:351–359

    CAS  Google Scholar 

  • Stevens CJ, Tsai YL, Tuovinen OH (1988) Assimilation of ammonium inThiobacillus ferrooxidans (abstract). American Society for Microbiology, Washington, DC, p 197

    Google Scholar 

  • Thomsen JK, Cox RP (1993) Upper temperature limits for growth and diazotrophy in the thermophilic cyanobacterium HTFChlorogloeopsis. Arch Microbiol 159:423–427

    Article  CAS  Google Scholar 

  • Tuovinen OH, Panda FA, Tsuchiya HM (1979) Nitrogen requirement of iron-oxidizing thiobacilli for acidic ferric sulfate regeneration. Appl Environ Microbiol 37:954–958

    PubMed  CAS  Google Scholar 

  • Wahlund TM, Madigan MT (1993) Nitrogen fixation by the thermophilic green sulfur bacteriumChlorobium tepidum. J Bacteriol 175:474–478

    PubMed  CAS  Google Scholar 

  • Wood AP, Kelly DP (1985) Autotrophic and mixotrophic growth and metabolism of some moderately thermoacidophilic ironoxidizing bacteria. In: Caldwell DE, Brierley JA, Brierley CL (eds) Planetary ecology. Van Nostrand, New York, pp 251–262

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Hinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norris, P.R., Colin Murrell, J. & Hinson, D. The potential for diazotrophy in iron-and sulfur-oxidizing acidophilic bacteria. Arch. Microbiol. 164, 294–300 (1995). https://doi.org/10.1007/BF02529964

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02529964

Key words

Navigation