Skip to main content
Log in

Genetic and Molecular Coordinates of Neuroendocrine Lung Tumors, with Emphasis on Small-cell Lung Carcinomas

  • Review Article
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

The aim of this review is to present the advances in our understanding of the progression of tumorigenesis in neuroendocrine lung tumors. Current information on established and putative diagnostic and prognostic markers of neuroendocrine tumors are evaluated, with a special reference to small-cell lung carcinoma, due to its higher incidence and aggressive behavior. The genetic and molecular changes that accompany these neoplasms are highlighted, and factors that influence cell-cycle progression, apoptosis, drug resistance, and escape from immune surveillance are critically assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Minna JD. (1998) Neoplasms of the lung. In: Fauci A, Braunweld E, Isselbacher K, et al., eds. Harrison’s Principles of Internal Medicine, 14th ed. New York: McGraw-Hill; pp. 552–562.

    Google Scholar 

  2. Travis WD, Colby TV, Corrin B, Shimosato Y, Brambilla E, in collaboration with Sobin LH, and pathologists from 14 countries. (1999) Histological typing of lung and pleural tumors. International Histological Classification of Tumors, 3rd ed. London, Springer, World Health Organization.

    Google Scholar 

  3. Capella C, Heitz PU, Hofler H, Solcia E, Kloppel G. (1995) Revised classification of neuroendocrine tumors of the lung, pancreas and gut. Virchows Arch. 425: 547–560.

    Article  PubMed  CAS  Google Scholar 

  4. Travis WD, Linnoila RI, Tsokos MG, et al. (1991) Neuroendocrine tumors of the lung with proposed criteria for large-cell neuroendocrine carcinoma: an ultrastructural, immunohistochemical, and flow cytometric study of 35 cases. Am. J. Surg. Pathol. 15: 529–553.

    Article  PubMed  CAS  Google Scholar 

  5. Junker K, Wiethege T, Muller KM. (2000) Pathology of small cell lung cancer. J. Cancer Res. Clin. Oncol. 126: 361–368.

    Article  PubMed  CAS  Google Scholar 

  6. Travis WD, Gal AG, Colby TV, Klimstra DS, Falk R, Ross MN. (1998) Reproducibility of neuroendocrine lung tumor classification. Hum. Pathol. 29: 272–279.

    Article  PubMed  CAS  Google Scholar 

  7. Brambilla E, Lantuejoul S, Sturm N. (2000) Divergent differentiation in neuroendocrine lung tumors. Semin. Diagnostic Pathol. 17: 138–148.

    CAS  Google Scholar 

  8. Dresler CM, Ritter JH, Patterson GA, Ross E, Bailey MS, Wick MR. (1997) Clinical-pathologic analysis of 40 patients with large cell neuroendocrine carcinoma of the lung. Ann. Thorac. Surg. 63: 180–185.

    Article  PubMed  CAS  Google Scholar 

  9. Travis WD, Rush W, Flieder DB, et al. (1998) Survival analysis of 200 pulmonary neuroendocrine tumors with clarification of criteria for atypical carcinoid and its separation from typical carcinoid. Am. J. Surg. Pathol. 22: 934–944.

    Article  PubMed  CAS  Google Scholar 

  10. Jiang SX, Kameya T, Shoji M, Dobashi Y, Shinada J, Yoshimura H. (1998) Large cell neuroendocrine carcinoma of the lung. A histologic and immunohistochemical study of 22 cases. Am. J. Surg. Pathol. 22: 526–537.

    Article  PubMed  CAS  Google Scholar 

  11. Rusch VW, Klimstra DS, Venkatraman ES. (1996) Molecular markers help characterize neuroendocrine lung tumors. Ann. Thorac. Surg. 62: 798–810.

    Article  PubMed  CAS  Google Scholar 

  12. Iyoda A, Hiroshima K, Toyozaki T, Haga Y, Fujisawa T, Ohwada H. (2001) Clinical characterization of pulmonary large cell neuroendocrine carcinoma and large cell carcinoma with neuroendocrine morphology. Cancer 91: 1992–2000.

    Article  PubMed  CAS  Google Scholar 

  13. Heasley LE. (2001) Autocrine and paracrine signaling through neuropeptide receptors in human cancer. Oncogene 20: 1563–1569.

    Article  PubMed  CAS  Google Scholar 

  14. Coulson JM, Fiskerstrand CE, Woll PJ, Quinn JP. (1999) Arginine vasopressin promoter regulation is mediated by a neuron-restrictive silencer element in small cell lung cancer. Cancer Res. 59: 5123–5127.

    PubMed  CAS  Google Scholar 

  15. Coulson JM, Stanley J, Woll PJ. (1999) Tumor-specific arginine vasopressin promoter activation in small-cell lung cancer. Br. J. Cancer 80: 1935–1944.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Picon A, Leblond-Francillard M, Raffin-Sanson ML, Lenne F, Bertagna X, de Keyzer Y. (1995) Functional analysis of the human pro-opiomelanocortin promoter in the small-cell lung carcinoma cell line DMS-79. J. Mol. Endocrinol. 15: 187–194.

    Article  PubMed  CAS  Google Scholar 

  17. Davis TP, Crowell S, McInturff B, Louis R, Gillespie T. (1991) Neurotensin may function as a regulatory peptide in small cell lung cancer. Peptides 12: 17–23.

    Article  PubMed  CAS  Google Scholar 

  18. Geijer T, Folkesson R, Rehfeld JF, Monstein HJ. (1990) Expression of the cholecystokinin gene in a human (small cell) lung carcinoma cell line. FEBS Lett. 270: 30–32.

    Article  PubMed  CAS  Google Scholar 

  19. Khuder SA. (2001) Effect of cigarette smoking on major histological types of lung cancer: a meta-analysis. Lung Cancer 31: 139–148.

    Article  PubMed  CAS  Google Scholar 

  20. Barbone F, Bovenzi M, Cavallieri F, Stanta G. (1997) Cigarette smoking and histologic type of lung cancer in men. Chest 112: 1474–1479.

    Article  PubMed  CAS  Google Scholar 

  21. Khuder SA, Dayal HH, Mutgi AB, Willey JC, Dayal G. (1998) Effect of cigarette smoking on major histological types of lung cancer in men. Lung Cancer 22: 15–21.

    Article  PubMed  CAS  Google Scholar 

  22. Yang CP, Gallagher RP, Weiss NS, Band PR, Thomas DB, Russell DA. (1989) Differences in incidence rates of cancers of the respiratory tract by anatomic subsite and histologic type: an etiologic implication. J. Natl. Cancer Inst. 81: 1828–1831.

    Article  PubMed  CAS  Google Scholar 

  23. Wistuba II, Gazdar AF, Minna JD. (2001) Molecular genetics of small cell lung carcinoma. Semin. Oncol. 28(suppl 4): 3–13.

    Article  PubMed  CAS  Google Scholar 

  24. Martini N, Zaman MB, Bains MS, et al. (1994) Treatment and prognosis in bronchial carcinoid involving regional lymph nodes. J. Thorac. Cardiovasc. Surg. 107: 1–7.

    PubMed  CAS  Google Scholar 

  25. Janssen-Heijnen ML, Coebergh JW. (2001) Trends in incidence and prognosis of the histological subtypes of lung cancer in North America, Australia, New Zealand and Europe. Lung Cancer 31: 123–137.

    Article  PubMed  CAS  Google Scholar 

  26. Garcia-Yuste M, Matilla JM, Alvarez-Cago T, et al. (2000) Spanish Multicenter Study of neuroendocrine tumors of the lung of the Spanish Society of Pneumonology and Thoracic Surgery (EMETNE-SEPAR). Prognostic factors in neuroendocrine lung tumors: a Spanish multicenter study. Ann. Thorac. Surg. 70: 258–263.

    Article  PubMed  CAS  Google Scholar 

  27. Modlin IM, Sandor A. (1997) An analysis of 8305 cases of carcinoid tumors. Cancer 79: 813–829.

    Article  PubMed  CAS  Google Scholar 

  28. Ullmann R, Schwendel A, Klemen H, Wolf G, Petersen I, Popper HH. (1998) Unbalanced chromosomal aberrations in neuroendocrine lung tumors as detected by comparative genomic hybridization. Hum. Pathol. 29: 1145–1149.

    Article  PubMed  CAS  Google Scholar 

  29. Girard L, Zochbauer-Muller S, Virmani AK, Gazdar AF, Minna JD. (2000) Genome-wide allelotyping of lung cancer identifies new regions of allelic loss differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer Res. 60: 4894–4906.

    PubMed  CAS  Google Scholar 

  30. Petersen I, Langreck H, Wolf G, et al. (1997) Small-cell lung cancer is characterized by a high incidence of deletions on chromosomes 3p, 4q, 5q, 10q, 13q and 17p. Br. J. Cancer 75: 79–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Virmani AK, Fong KM, Kodagoda D, et al. (1998) Allelotyping demonstrates common and distinct patterns of chromosomal loss in human lung cancer types. Genes Chromosomes Cancer 21: 308–319.

    Article  PubMed  CAS  Google Scholar 

  32. Levin NA, Brzoska P, Gupta N, Minna JD, Gray JW, Christman MF. (1994) Identification of frequent novel genetic alterations in small cell lung carcinoma. Cancer Res. 54: 5086–5091.

    PubMed  CAS  Google Scholar 

  33. Levin NA, Brzoska PM, Warnock ML, Gray JW, Christman MF. (1995) Identification of novel regions of altered DNA copy number in small cell lung tumors. Genes Chromosomes Cancer 13: 175–185.

    Article  PubMed  CAS  Google Scholar 

  34. Schwendel A, Langreck H, Reichel M, et al. (1997) Primary small-cell carcinomas and their metastases are characterised by a recurrent pattern of genetic alterations. Int. J. Cancer 74: 86–93.

    Article  PubMed  CAS  Google Scholar 

  35. Ried T, Petersen I, Holtgreve-Grez H, et al. (1994) Mapping of multiple DNA gains and losses in primary small cell lung carcinomas by comparative genomic hybridization. Cancer Res. 54: 1801–1806.

    PubMed  CAS  Google Scholar 

  36. Testa JR, Liu Z, Feder M, et al. (1997) Advances in the analysis of chromosome alterations in human lung carcinomas. Cancer Genet. Cytogenet. 95: 20–32.

    Article  PubMed  CAS  Google Scholar 

  37. Ullmann R, Petzmann S, Sharma A, Cagle P, Popper H. (2001) Chromosomal aberrations in a series of large-cell neuroendocrine carcinomas: Unexpected divergence from small-cell carcinoma of the lung. Hum. Pathol. 32: 1059–1063.

    Article  PubMed  CAS  Google Scholar 

  38. Miura I, Graziano SL, Cheng JQ, Doyle A, Testa JR. (1992) Chromosome alterations in human small-cell lung cancer: frequent involvement of 5q. Cancer Res. 52: 1322–1328.

    PubMed  CAS  Google Scholar 

  39. Michelland S, Gazzeri S, Brambilla E, Robert-Nicoud M. (1999) Comparison of chromosomal imbalances in neuroendocrine and non-small-cell lung carcinomas. Cancer Genet. Cytogenet. 114: 22–30.

    Article  PubMed  CAS  Google Scholar 

  40. Lui W, Tanenbaum D, Larsson C. (2001) High level amplification of 1p32-33 and 2p22-24 in small cell lung carcinomas. Int. J. Oncol. 19: 451–457.

    PubMed  CAS  Google Scholar 

  41. Sozzi G, Veronese ML, Negrini M, et al. (1996) The FHIT gene at 3p14.2 is abnormal in lung cancer. Cell 85: 17–26.

    Article  PubMed  CAS  Google Scholar 

  42. Fong KM, Biesterveld EJ, Virmani A, et al. (1997) FHIT and FRA3B 3p14.2 allele loss are common in lung cancer and preneoplastic bronchial lesions and are associated with cancer-related FHIT cDNA splicing aberrations. Cancer Res. 57: 2256–2267.

    PubMed  CAS  Google Scholar 

  43. Sozzi G, Huebner K, Croce CM. (1998) FHIT in human cancer. Adv. Cancer Res. 74: 141–166.

    Article  PubMed  CAS  Google Scholar 

  44. Sozzi G, Tornielli S, Tagliabue E, et al. (1997) Absence of Fhit protein in primary lung tumors and cell lines with Fhit gene abnormalities. Cancer Res. 57: 5207–5212.

    PubMed  CAS  Google Scholar 

  45. Kovatich A, Friedland DM, Druck T, et al. (1998) Molecular alterations to human chromosome 3p loci in neuroendocrine lung tumors. Cancer 83: 1109–1117.

    Article  PubMed  CAS  Google Scholar 

  46. Burbee D, Forgacs E, Zochbauer-Muller S, et al. (2001) Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J. Natl. Cancer Inst. 93: 691–699.

    Article  PubMed  CAS  Google Scholar 

  47. Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP. (2000) Epigenetic inactivation of a RAS association domain family protein from the lung tumor suppressor locus 3p21.3. Nat. Genet. 25: 315–319.

    Article  PubMed  CAS  Google Scholar 

  48. Virmani AK, Rahti A, Zochbauer-Muller S, et al. (2000) Promoter methylation and silencing of the retinoic acid receptor beta gene in lung carcinomas. J. Natl. Cancer Inst. 92: 1303–1307.

    Article  PubMed  CAS  Google Scholar 

  49. Onuki N, Wistuba II, Travis WD, et al. (1999) Genetic changes in the spectrum of neuroendocrine lung tumors. Cancer 85: 600–607.

    Article  PubMed  CAS  Google Scholar 

  50. Dooley S, Wundrack I, Blin N, Welter C. (1995) Coexpression pattern of c-myc associated genes in a small cell lung cancer cell line with high steady state c-myc transcription. Biochem. Biophys. Res. Commun. 13: 789–795.

    Article  Google Scholar 

  51. Wistuba II, Berry J, Behrens C, et al. (2000) Molecular changes in the bronchial epithelium of patients with small cell lung cancer. Clin. Cancer Res. 6: 2604–2610.

    PubMed  PubMed Central  CAS  Google Scholar 

  52. D’Amico D, Carbone DP, Johnson BE, Meltzer SJ, Minna JD. (1992) Polymorphic sites within the MCC and APC loci reveal very frequent loss of heterozygosity in human small cell lung cancer. Cancer Res. 52: 1996–1999.

    PubMed  Google Scholar 

  53. Hosoe S, Ueno K, Shigedo Y, et al. (1994) A frequent deletion of chromosome 5q21 in advanced small-cell and non-small-cell carcinoma of the lung. Cancer Res. 54: 1787–1790.

    PubMed  CAS  Google Scholar 

  54. Giaccone G. (1996) Oncogenes and antioncogenes in lung tumorigenesis. Chest 109: 130S–134S.

    Article  PubMed  CAS  Google Scholar 

  55. Sekido Y, Takahashi T, Ueda R, et al. (1993) Recombinant human stem cell factor mediates chemotaxis of small cell lung cancer cell lines aberrantly expressing the c-kit protooncogene. Cancer Res. 53: 1709–1714.

    PubMed  CAS  Google Scholar 

  56. Shivapurkar N, Virmani AK, Wistuba II, et al. (1999) Deletions of chromosome 4 at multiple sites are frequent in malignant mesothelioma and small cell lung carcinoma. Clin. Cancer Res. 5: 17–23.

    PubMed  CAS  Google Scholar 

  57. Merlo A, Gabrielson E, Mabry M, Vollmer R, Baylin SB, Sidransky D. (1994) Homozygous deletion on chromosome 9p and loss of heterozygosity on 9q, 6p and 6q in primary human small cell lung cancer. Cancer Res. 54: 2322–2326.

    PubMed  CAS  Google Scholar 

  58. Walch AK, Zitzelsberger HF, Aubele MM et al. (1998) Typical and atypical carcinoid tumors of the lung are characterised by 11q deletions as detected by comparative genomic hybridization. Am. J. Pathol. 153: 1089–1098.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Debelenko LV, Swalwell JI, Kelley MJ, et al. (2000) MEN1 gene mutation analysis of high-grade neuroendocrine lung carcinoma. Genes Chromosomes Cancer 28: 58–65.

    Article  PubMed  CAS  Google Scholar 

  60. Przygodzki RM, Finkelstein SD, Langer JC, et al. (1996) Analysis of p53, K-ras-2, and C-raf-1 in pulmonary neuroendocrine tumors. Am. J. Pathol. 148: 1531–1541.

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Ullmann R Petzmann S, Klemen H, Fraire AE, Hasleton P, Popper HH. (2002) The position of pulmonary carcinoids within the spectrum of neuroendocrine tumors of the lung and other tissues. Genes Chromosomes Cancer 34: 78–85.

    Article  PubMed  CAS  Google Scholar 

  62. Jakobovitz O, Nass D, DeMarco L, et al. (1996) Carcinoid tumors frequently display genetic abnormalities involving chromosome 11. J. Clin. Endocrinol. Metab. 81: 3164–3167.

    PubMed  CAS  Google Scholar 

  63. Dong Q, Debelenko LV, Chandrasekharappa SC, et al. (1997) Loss of heterozygosity at 11q13 analysis of pituitary tumors, lung carcinoids, lipomas, and other uncommon tumors in subjects with familial multiple endocrine neoplasia type 1. J. Clin. Endocrinol. Metab. 82: 1416–1420.

    Article  PubMed  CAS  Google Scholar 

  64. Debelenko LV, Brambilla E, Agarwal SK, et al. (1997) Identification of MEN1 gene mutations in sporadic carcinoid tumors of the lung. Hum. Mol. Genet. 13: 2285–2290.

    Article  Google Scholar 

  65. Petzmann S, Ullmann R, Klemen H, Renner H, Popper HH. (2001) Loss of heterozygosity on chromosome arm 11q in lung carcinoids. Hum. Pathol. 32: 333–338.

    Article  PubMed  CAS  Google Scholar 

  66. Sekido Y, Fong KM, Minna JD. (1998) Progress in understanding the molecular pathogenesis of human lung cancer. Biochim. Biophys. Acta 1378: F21–F59.

    PubMed  CAS  Google Scholar 

  67. Hurr K, Kemp B, Silver SA, El-Naggar AK. (1996) Microsatellite alteration at chromosome 3p loci in neuroendocrine and non-neuroendocrine lung tumors. Histogenetic and clinical relevance. Am. J. Pathol. 149: 613–620.

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Merlo A, Mabry M, Gabrielson E, Vollmer R, Baylin S, Sidransky D. (1994) Frequent microsatellite instability in primary small cell lung cancer. Cancer Res. 54: 2098–2101.

    PubMed  CAS  Google Scholar 

  69. Mao L, Lee DJ, Tockman MS, Erozan YS, Askin F, Sindransky D. (1994) Microsatellite alterations as clonal markers for the detection of human cancer. Proc. Natl. Acad. Sci. U. S. A. 91: 9871–9875.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Chen XQ, Stroun M, Magnenat JL, et al. (1996) Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nat. Med. 2: 1033–1035.

    Article  PubMed  CAS  Google Scholar 

  71. Gonzalez R, Silva JM, Sanchez A, et al. (2000) Microsatellite alterations and TP53 mutations in plasma DNA of small-cell lung cancer patients: follow-up study and prognostic significance. Ann. Oncol. 11: 1097–1104.

    Article  PubMed  CAS  Google Scholar 

  72. Prigent SA, Lemoine NR. (1992) The type 1 (EGFR-related) family of growth factors receptors and their ligants. Prog. Growth Factor Res. 4: 1–24.

    Article  PubMed  CAS  Google Scholar 

  73. Genersch E, Schuppan D, Lichtner RB. (1996) Signaling by epidermal growth factor differentially affects integrinmediated adhesion of tumor cells to extracellular matrix proteins. J. Mol. Med. 74: 609–616.

    Article  PubMed  CAS  Google Scholar 

  74. Guo N, Templeton NS, Al-Barazi H, et al. (2000) Thrombospondin-1 promotes α3β1 integrin-mediated adhesion and neurite-like outgrowth and inhibits proliferation of small cell lung carcinoma cells. Cancer Res. 60: 457–466.

    PubMed  CAS  Google Scholar 

  75. Gullick WJ. (1998) Type I growth factor receptors: current status and future work. Biochem. Soc. Symp. 63: 193–198.

    PubMed  CAS  Google Scholar 

  76. Kaseda S, Ueda M, Ozawa S, Ishihara T, Abe O, Shimizu N. (1989) Expression of epidermal growth factor receptors in four histologic types of lung cancer. J. Surg. Oncol. 42: 16–20.

    Article  PubMed  CAS  Google Scholar 

  77. Damstrup L, Rygaard K, Spang-Thomsen M, Poulsen HS. (1992) Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines. Cancer Res. 52: 3089–3093.

    PubMed  CAS  Google Scholar 

  78. Haeder M, Rotsch M, Bepler G, et al. (1988) Epidermal growth factor receptor expression in human lung cancer cell lines. Cancer Res. 48: 1132–1136.

    PubMed  CAS  Google Scholar 

  79. Micke P, Hengstler JG, Ros R, et al. (2001) c-erbB-2 expression in small-cell lung cancer is associated with poor prognosis. Int. J. Cancer 92: 474–479.

    Article  PubMed  CAS  Google Scholar 

  80. Jones J, Clemmons D. (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocrinol. Rev. 16: 3–34.

    CAS  Google Scholar 

  81. Grimberg A, Cohen P. (2000) Role of insulin-like growth factors and their binding proteins in growth control and carcinogenesis. J. Cell Physiol. 183: 1–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Nakanishi Y, Mulshine J, Kasprzyc PG, et al. (1988) Insulinlike growth factor-I can mediate autocrine proliferation of human small cell lung cancer cell lines in vitro. J. Clin. Invest. 82: 354–359.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Hynes RO. (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69: 11–25.

    Article  PubMed  CAS  Google Scholar 

  84. Feldman LE, Shin KC, Natale RB, Todd TG. (1991) β1 integrin expression on human small cell lung cancer cells. Cancer Res. 51: 1065–1070.

    PubMed  CAS  Google Scholar 

  85. Mette SA, Pilewski J, Buck CA, Albelda SM. (1993) Distribution of integrin cell adhesion receptors on normal bronchial epithelial cells and lung cancer cells in vitro and in vivo. Am. J. Respir. Cell Mol. Biol. 8: 562–572.

    Article  PubMed  CAS  Google Scholar 

  86. Bartolazzi A, Cerboni C, Flamini G, Bigotti A, Lauriola L, Natali PG. (1995) Expression of α3β1 integrin receptor and its ligands in human lung tumors. Int. J. Cancer 64: 248–252.

    Article  PubMed  CAS  Google Scholar 

  87. Pellegrini R, Martignone S, Menard S, Colnaghi MI. (1994) Laminin receptor expression and function in small-cell lung carcinoma. Int. J. Cancer 8(suppl): 116–120.

    Article  CAS  Google Scholar 

  88. Hemler ME, Elices MJ, Chan BMC, Zetter B, Matsuura N, Takada Y. (1990) Multiple ligand binding functions for VLA-2 (α2β1) and VLA-3 (α3β1) in the integrin family. Cell Differ. Dev. 32: 229–238.

    Article  PubMed  CAS  Google Scholar 

  89. Elices MJ, Urry LA, Hemler ME. (1991) Receptor functions for the integrin VLA-3: fibronectin, collagen, and laminin binding are differentially influenced by ARG-GLY-ASP peptide and by divalent cations. J. Cell. Biol. 112: 169–181.

    Article  PubMed  CAS  Google Scholar 

  90. Virtanen I, Laitinen A, Tani T, et al. (1996) Differential expression of laminins and their integrin receptors in developing and adult human lung. Am. J. Respir. Cell. Mol. Biol. 15: 184–196.

    Article  PubMed  CAS  Google Scholar 

  91. Barr LF, Campbell SE, Bochner BS, Dang CV. (1998) Association of the decreased expression of α3β1 integrin with the altered cell: environmental interactions and enhanced soft agar cloning ability of c-myc-overexpressing small cell lung cancer cells. Cancer Res. 58: 5537–5545.

    PubMed  CAS  Google Scholar 

  92. Tokman MG, Porter RA, Williams CL. (1997) Regulation of cadherin-mediated adhesion by the small GTP-binding protein Rho in small cell lung carcinoma cells. Cancer Res. 57: 1785–1793.

    PubMed  CAS  Google Scholar 

  93. Jankowski JA, Bruton R, Shepherd N, Sanders DC. (1997) Cadherin and catenin biology represent a global mechanism for epithelial cancer progression. Mol. Pathol. 50: 289–290.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Shiozaki H, Oka H, Inoue M, Tamura S, Monden M. (1996) E-cadherin mediated adhesion system in cancer cells. Cancer 77(suppl): 1605–1613.

    Article  PubMed  CAS  Google Scholar 

  95. Clavel CE, Nollet F, Berx G, et al. (2001) Expression of the E-cadherin-catenin complex in lung neuroendocrine tumors. J. Pathol. 194: 20–26.

    Article  PubMed  CAS  Google Scholar 

  96. Tsukita S, Tsukita S, Nagafuchi A, Yonemura S. (1992) Molecular linkage between cadherins and actin filaments in cell-cell adherens junctions. Curr. Opin. Cell Biol. 4: 834–839.

    Article  PubMed  CAS  Google Scholar 

  97. Nishimura M, Machida K, Imaizumi M, et al. (1996) Tyrosine phosphorylation of 100–130 kDa proteins in lung cancer correlates with poor prognosis. Br. J. Cancer 74: 780–787.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Rodriguez-Salas N, Palacios J, de Castro J, Moreno G, Gonzalez-Baron M, Gamallo C. (2001) Beta-catenin expression pattern in small-cell lung cancer: correlation with clinical and evolutive features. Histol. Histopathol. 16: 353–358.

    PubMed  CAS  Google Scholar 

  99. Sneath RJ, Mangham DC. (1998) The normal structure and function of CD44 and its role in neoplasia. Mol. Pathol. 51: 191–200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Coppola D, Clarke M, Landreneau R, Weyant RJ, Cooper D, Yousem SA. (1996) Bcl-2, p53, CD44 and CD44v6 isoform expression in neuroendocrine tumors of the lung. Mod. Pathol. 9: 484–490.

    PubMed  CAS  Google Scholar 

  101. Mizera-Nyszac E, Dyszkiewicz W, Heider KH, Zeromski J. (2001) Isoform expression of CD44 adhesion molecules, Bcl-2, p53 and Ki-67 proteins in lung cancer. Tumor Biol. 22: 45–53.

    Article  Google Scholar 

  102. Stevenson AJ, Chatten J, Bertoni F, Miettinen M. (1994) CD99 (p30/32MIC2) neuroectodermal/Ewing’s sarcoma antigen as an immunohistochemical marker. Review of more than 600 tumors and the literature experience. Appl. Immunohistochem. 2: 231–240.

    Google Scholar 

  103. Pelosi G, Fraggetta F, Sonzogni A, Fazio N, Cavallon A, Viale G. (2000) CD99 immunoreactivity in gastrointestinal and pulmonary neuroendocrine tumors. Virchows Arch. 437: 270–274.

    Article  PubMed  CAS  Google Scholar 

  104. Lumadue JA, Askin FB, Perlman EJ. (1994) MIC2 analysis of small cell carcinoma. Am. J. Clin. Pathol. 102: 692–694.

    Article  PubMed  CAS  Google Scholar 

  105. Strasser A, Huang DCS, Vaux DL. (1997) The role of the bcl-2/ced-9 gene family in cancer and general implications of defects in cell death control for tumorigenesis and resistance to chemotherapy. Biochim. Biophys. Acta 1333: F151–F178.

    PubMed  CAS  Google Scholar 

  106. Klefer MC, Brauer MJ, Powers VC, et al. (1995) Modulation of apoptosis by the widely distributed Bcl-2 homologue Bak. Nature 374: 736–739.

    Article  Google Scholar 

  107. Oltvai ZN, Milliman CL, Korsmayer SJ. (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609–619.

    Article  PubMed  CAS  Google Scholar 

  108. Kozopas KM, Yang T, Buchan HI, Zhou P, Craig RW. (1993) Mcl-1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to Bcl-2. Proc. Natl. Acad. Sci. U. S. A. 90: 3516–3520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Yin C, Knudson CM, Korsmeyer SJ, Van Dyke T. (1997) Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 385: 637–640.

    Article  PubMed  CAS  Google Scholar 

  110. Sato T, Hanada M, Bodrug S, et al. (1994) Interactions among members of the bcl-2 protein family analyzed with a yeast two-hybrid system. Proc. Natl. Acad. Sci. U. S. A. 91: 9238–9242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Sedlak TW, Oltvai ZN, Yang E, et al. (1995) Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc. Natl. Acad. Sci. U. S. A. 92: 7834–7838.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Brambilla E, Negoescu A, Gazzeri S, et al. (1996) Apoptosis-related factors p53, Bcl-2, and bax in neuroendocrine lung tumors. Am. J. Pathol. 149: 1941–1952.

    PubMed  PubMed Central  CAS  Google Scholar 

  113. Wang DG, Johnston CF, Sloan JM, Buchanan KD. (1998) Expression of Bcl-2 in lung neuroendocrine tumors: comparison with p53. J. Pathol. 184: 247–251.

    Article  PubMed  CAS  Google Scholar 

  114. Eerola AK, Tormanen U, Rainio P, et al. (1997) Apoptosis in operated small cell lung carcinoma is inversely related to tumor necrosis and p53 immunoreactivity. J. Pathol. 181: 172–177.

    Article  PubMed  CAS  Google Scholar 

  115. Jiang S, Sato Y, Kuwao S, Kameya T. (1995) Expression of bcl-2 oncogene protein is prevalent in small cell lung carcinomas. J. Pathol. 177: 135–138.

    Article  PubMed  CAS  Google Scholar 

  116. Ikegaki N, Katsumata M, Minna J, Tsujimoto Y. (1994) Expression of bcl-2 in small cell lung carcinoma cells. Cancer Res. 54: 6–8.

    PubMed  CAS  Google Scholar 

  117. Ben-Ezra J, Kornstein M, Grimes M, Krystal G. (1994) Small cell carcinomas of the lung express the bcl-2 protein. Am. J. Pathol. 145: 1036–1040.

    PubMed  PubMed Central  CAS  Google Scholar 

  118. Stefanaki K, Rontogiannis D, Vamvouka C, et al. (1998) Immunohistochemical detection of bcl-2, p53, mdm2 and p21/waf1 proteins in small-cell lung carcinomas. Anticancer Res. 18: 1689–1696.

    PubMed  CAS  Google Scholar 

  119. Higashiyama M, Doi O, Kodama K, Yokouchi H, Tateishi R. (1995) High prevalence of bcl-2 oncoprotein expression in small cell lung cancer. Anticancer Res. 15: 503–505.

    PubMed  CAS  Google Scholar 

  120. Sartorius UA, Krammer PH. (2002) Upregulation of Bcl-2 is involved in the mediation of chemotherapy resistance in human small cell lung cancer cell lines. Int. J. Cancer 97: 584–592.

    Article  PubMed  CAS  Google Scholar 

  121. Dingemans A, Witlox M, Stallaert R, Van der Valk P, Postmus P, Giaccone G. (1999) Expression of DNA topoisomerase IIα and topoisomerase IIβ genes predicts survival and response to chemotherapy in patients with small cell lung cancer. Clin. Cancer Res. 5: 2048–2058.

    PubMed  CAS  Google Scholar 

  122. Maitra A, Amirkhan R, Saboorian H, Frawley W, Ashfaq R. (1999) Survival in small cell lung carcinoma is independent of bcl-2 expression. Hum. Pathol. 30: 712–717.

    Article  PubMed  CAS  Google Scholar 

  123. Ohmori T, Rodack ER, Nishio K, et al. (1993) Apoptosis of lung cancer cells caused by some anti-cancer agents (MMC, CPT-11, ADM) is inhibited by bcl-2. Biochem. Biophys. Res. Commun. 192: 30–36.

    Article  PubMed  CAS  Google Scholar 

  124. Pal’tsev MA, Demura SA, Kogan EA, Jaques G, Zende B. (2000) Role of Bcl-2, Bax, and Bak in spontaneous apoptosis and proliferation in neuroendocrine lung tumors: immunohistochemical study. Bull. Exp. Biol. Med. 130: 697–700.

    Article  PubMed  Google Scholar 

  125. Eerola AK, Ruokolainen H, Soini Y, Raunio H, Paakko P. (1999) Accelerating apoptosis and low bcl-2 expression associated with neuroendocrine differentiation predict shortened survival in operated large cell carcinoma of the lung. Pathol. Oncol. Res. 5: 179–186.

    Article  PubMed  CAS  Google Scholar 

  126. Laitinen KLJ, Soini Y, Mattila J, Paakko P. (2000) Atypical bronchopulmonary carcinoids show a tendency toward increased apoptotic and proliferative activity. Cancer 88: 1590–1598.

    Article  PubMed  CAS  Google Scholar 

  127. Zirbes TK, Lorenzen J, Baldus SE, et al. (1998) Apoptosis and expression of bcl-2 protein are inverse factors influencing tumor cell turnover in primary carcinoid tumors of the lung. Histopathology 33: 123–128.

    Article  PubMed  CAS  Google Scholar 

  128. Prives C, Hall PA. (1999) The p53 pathway. J. Pathol. 187: 112–126.

    Article  PubMed  CAS  Google Scholar 

  129. Oren M, Prives C. (1996) p53: upstream, downstream and off-stream. Review of the 8th p53 workshop (Dundee, July 5–9, 1996). Biochim. Biophys. Acta 1288: R13–R19.

    PubMed  CAS  Google Scholar 

  130. Gazdar AF. (1994) The molecular and cellular basis of human lung cancer. Anticancer Res. 13: 261–268.

    Google Scholar 

  131. D’Amico D, Carbone D, Mitsudomi T, et al. (1992) High frequency of somatically acquired p53 mutations in small-cell lung cancer cell lines and tumors. Oncogene 7: 339–346.

    PubMed  Google Scholar 

  132. Sameshina Y, Matsuno Y, Hirohashi S, et al. (1992) Alterations of p53 gene are common and critical events for the maintenance of malignant phenotypes in small-cell lung carcinoma. Oncogene 7: 451–457.

    Google Scholar 

  133. Santinelli A, Ranaldi R, Bacarrini M, Mannello B, Bearzi I. (1999) Ploidy, proliferative activity, p53 and bcl-2 expression in bronchopulmonary carcinoids: relationship with prognosis. Pathol. Res. Pract. 195: 467–474.

    Article  PubMed  CAS  Google Scholar 

  134. Joseph M, Banerjee D, Kocha W, Feld R, Stitt L, Cherian M. (2001) Metallothionein expression in patients with small cell carcinoma of the lung. Cancer 92: 836–842.

    Article  PubMed  CAS  Google Scholar 

  135. Barbareschi M, Girlando S, Mauri Fa, et al. (1992) Tumor suppressor gene products, proliferation and differentiation markers in lung neuroendocrine neoplasms. J. Pathol. 166: 343–350.

    Article  PubMed  CAS  Google Scholar 

  136. Wang DG, Johnston CF, Anderson N, Sloan JM, Buchanan KD. (1995) Overexpression of the tumor suppressor gene p53 is not implicated in neuroendocrine tumor carcinogenesis. J. Pathol. 175: 397–401.

    Article  PubMed  CAS  Google Scholar 

  137. Iggo R, Gatter K, Bartek J, Lane D, Harris AL. (1990) Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet 335: 675–679.

    Article  PubMed  CAS  Google Scholar 

  138. Lohmann DR, Fesseler B, Putz B, et al. (1993) Infrequent mutations of the p53 gene in pulmonary carcinoid tumors. Cancer Res. 53: 5797–5801.

    PubMed  CAS  Google Scholar 

  139. Yatabe Y, Masuda A, Koshikawa T, et al. (1998) p27KIP1 in human lung cancers: Differential changes in small cell and non-small cell carcinomas. Cancer Res. 58: 1042–1047.

    PubMed  CAS  Google Scholar 

  140. Kouvaraki M, Gorgoulis VG, Rassidakis GZ, et al. (2002) High expression levels of p27 correlate with lymph node status in a subset of advanced invasive breast carcinomas. Relation to E-Cadherin alterations, proliferative activity, and ploidy of the tumors. Cancer 94: 2454–2465.

    Article  PubMed  CAS  Google Scholar 

  141. Vlach J, Henneckke S, Alevizopoulos K, Conti D, Amati B. (1996) Growth arrest by the cyclin-dependent kinase inhibitor p27KIP1 is abrogated by c-myc. EMBO J. 15: 6595–6604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Masuda A, Osada H, Yatabe Y, et al. (2001) Protective function of p27KIP1 against apoptosis in small cell lung cancer cells in unfavorable microenviroments. Am. J. Pathol. 158: 87–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Kelley MJ, Nakagawa K, Steinberg SM, Mulshine JL, Kamb A, Johnson BE. (1995) Differential inactivation of CDKN2 and Rb protein in non-small-cell and small-cell lung cancer cell lines. J. Natl. Cancer Inst. 87: 756–761.

    Article  PubMed  CAS  Google Scholar 

  144. Gouyer V, Gazzeri S, Bolon I, Drevet C, Brambilla C, Brambilla E. (1998) Mechanism of retinoblastoma gene inactivation in the spectrum of neuroendocrine lung tumors. Am. J. Respir. Cell. Mol. Biol. 18: 188–196.

    Article  PubMed  CAS  Google Scholar 

  145. Gouyer V, Gazzeri S, Brambilla E, et al. (1994) Loss of heterozygosity at the Rb locus correlates with loss of RB protein in primary malignant neuroendocrine lung carcinomas. Int. J. Cancer 58: 818–824.

    Article  PubMed  CAS  Google Scholar 

  146. Mori N, Yokota J, Akiyama T, et al. (1990) Variable mutations of the Rb gene in small-cell carcinoma. Oncogene 5: 1713–1717.

    PubMed  CAS  Google Scholar 

  147. Grana X, Garigga J, Mayol X. (1998) Role of retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth. Oncogene 17: 3365–3383.

    Article  PubMed  Google Scholar 

  148. Lai SL, Brauch H, Knutsen T, et al. (1995) Molecular genetic characterization of neuroendocrine lung cancer cell lines. Anticancer Res. 15: 225–232.

    PubMed  CAS  Google Scholar 

  149. Yuan J, Knorr J, Altmannsberger M, et al. (1999) Expression of p16 and lack of pRb in primary small cell lung cancer. J. Pathol. 189: 358–362.

    Article  PubMed  CAS  Google Scholar 

  150. Schauer IE, Siriwardana S, Langen TA, Sclafani RA. (1994) Cyclin D1 overexpression vs retinoblastoma inactivation: implications for growth control evasion in non-small cell and small cell lung cancer. Proc. Natl. Acad. Sci. U. S. A. 91: 7827–7831.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Dosaka-Akita H, Cagle PT, Hiroumi H, et al. (2000) Differential retinoblastoma and p16INK4A protein expression in neuroendocrine tumors of the lung. Cancer 88: 550–556.

    Article  PubMed  CAS  Google Scholar 

  152. Cagle PT, El-Naggar AK, Xu H, Hu S, Benedict WF. (1997) Differential retinoblastoma protein expression in neuroendocrine tumors of the lung. Am. J. Pathol. 150: 393–400.

    PubMed  PubMed Central  CAS  Google Scholar 

  153. Johnson DG, Schneider-Broussard R. (1998) Role of E2F in cell cycle control and cancer. Front. Biosci. 3: 447–448.

    Article  Google Scholar 

  154. Eymin B, Gazzeri S, Brambilla C, Brambilla E. (2001) Distinct pattern of E2F1 expression in human lung tumors: E2F1 is upregulated in small-cell lung carcinoma. Oncogene 20: 1678–1687.

    Article  PubMed  CAS  Google Scholar 

  155. Gorgoulis VG, Zacharatos P, Mariatos G, et al. (2002) Transcription factor E2F-1 acts as a growth-promoting factor and is associated with adverse prognosis in non-small cell lung carcinomas. J. Pathol. 194: in press.

  156. Cordon-Cardo C. (1995) Mutation of cell-cycle regulators. Biological and clinical implications for human neoplasia (review). Am. J. Pathol. 147: 545–560.

    PubMed  PubMed Central  CAS  Google Scholar 

  157. Olopade OI, Buchhagen DL, Malik K, et al. (1993) Homozygous loss of the interferon genes defines the critical region on 9p that is deleted in lung cancers. Cancer Res. 53(suppl 10): 2410–2415.

    PubMed  CAS  Google Scholar 

  158. Sumitomo K, Shimizu E, Shinohara A, Yokota J, Sone S. (1999) Activation of Rb tumor suppressor protein and growth suppression of small cell lung carcinoma cells by reintroduction of p16INK4A gene. Int. J. Oncol. 14: 1075–1080.

    PubMed  CAS  Google Scholar 

  159. Chaussade L, Eymin B, Brambilla E, Gazzeri S. (2001) Expression of p15 and p15.5 products in neuroendocrine lung tumors: relationship with p15INK4b methylation status. Oncogene 20: 6587–6596.

    Article  PubMed  CAS  Google Scholar 

  160. Prins J, De Vries E, Mulder N. (1993) The myc family of oncogenes and their presense and importance in small-cell lung carcinoma and other tumor types. Anticancer Res. 13: 1373–1386.

    PubMed  CAS  Google Scholar 

  161. Field JK, Spandidos DA. (1990) The role of ras and myc oncogenes in human solid tumors and their relevance in diagnosis and prognosis. Anticancer Res. 10: 1–22.

    PubMed  CAS  Google Scholar 

  162. Rygaard K, Vindelov L, Spang-Thomsen M. (1993) Expression of myc family oncoproteins in small-cell lung-cancer cell lines and xenografts. Int. J. Cancer 54: 144–152.

    Article  PubMed  CAS  Google Scholar 

  163. Noguchi M, Hirohashi S, Hara F, et al. (1990) Heterogenous amplification of myc family oncogenes in small cell lung carcinoma. Cancer 66: 2053–2058.

    Article  PubMed  CAS  Google Scholar 

  164. Johnson BE, Russell E, Simmons AM, et al. (1996) Myc family DNA amplification in 126 tumor cell lines from patients with small cell lung cancer. J. Cell. Biochem. 24(suppl): 210–217.

    Article  CAS  Google Scholar 

  165. Yamada T, Kohno T, Navarro JM, Ohwada S, Perucho M, Yokota J. (2000) Frequent chromosome 8q gains in human small-cell lung carcinoma detected by arbitrarily primed-PCR genomic fingerprinting. Cancer Genet. Cytogenet. 120: 11–17.

    Article  PubMed  CAS  Google Scholar 

  166. Van Waardenburg RCAM, Meijer C, Burger H, et al. (1997) Effects of an inducible anti-sense c-myc gene transfer in a drug-resistant human small-cell-lung-carcinoma cell line. Int. J. Cancer 73: 544–550.

    Article  PubMed  Google Scholar 

  167. Van Waardenburg RCAM, Prins J, Meijer C, Uges DRA, De Vries EGE, Mulder NH. (1996) Effects of c-myc oncogene modulation on drug resistance in human small cell lung carcinoma cell lines. Anticancer Res. 16: 1963–1970.

    PubMed  Google Scholar 

  168. Shtivelman E. (1997) A link between metastasis and resistance to apoptosis of variant small-cell lung carcinoma. Oncogene 14: 2167–2173.

    Article  PubMed  CAS  Google Scholar 

  169. Xiao H, Palhan V, Yang Y, Roeder RG. (2000) TIP30 has an intrinsic kinase activity required for up-regulation of a subset of apoptotic genes. EMBO J. 19: 956–963.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. NicAmhlaoibh R, Shtivelman E. (2001) Metastasis suppressor CC3 inhibits angiogenic properties of tumor cells in vitro. Oncogene 20: 270–275.

    Article  PubMed  CAS  Google Scholar 

  171. Seger R, Krebs EG. (1995) The MAPK signaling cascade. FASEB J. 9: 726–735.

    Article  PubMed  CAS  Google Scholar 

  172. Ravi RK, Weber E, McMahon M, et al. (1998) Activated Raf-1 causes growth arrest in human small cell lung cancer cells. J. Clin. Invest. 101: 153–159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Marshall M. (1995) Interactions between ras and raf: key regulatory proteins in cellular transformation. Mol. Reprod. Dev. 42: 493–499.

    Article  PubMed  CAS  Google Scholar 

  174. Stokoe D, MacDonald SG, Cadwallader K, Symons M, Hancock JF. (1994) Activation of raf as a result of recruitment to the plasma membrane. Science 264: 1463–1467.

    Article  PubMed  CAS  Google Scholar 

  175. Sriuranpong V, Borges M, Ravi R, et al. (2001) Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res. 61: 3200–3205.

    PubMed  CAS  Google Scholar 

  176. Krystal GW, Hines SJ, Organ CP. (1996) Autocrine growth of small cell lung cancer mediated by coexpression of c-kit and stem cell factor. Cancer Res. 56: 370–376.

    PubMed  CAS  Google Scholar 

  177. Wernert N, Raes MB, Lassalle PH, et al. (1992) c-ets-1 protooncogene is a transcription factor expressed in endothelial cells during tumor vascularization and other forms of angio-genesis in humans. Am. J. Pathol. 140: 119–127.

    PubMed  PubMed Central  CAS  Google Scholar 

  178. Wernert N, Gilles F, Fafeur V, et al. (1994) Stromal expression of c-ets 1 transcription factor correlates with tumor invasion. Cancer Res. 54: 5683–5688.

    PubMed  CAS  Google Scholar 

  179. Bolon I, Gouyer V, Devouassoux M, et al. (1995) Expression of c-ets-1, collagenase 1, and urokinase-type plasminogen activator genes in lung carcinomas. Am. J. Pathol. 147: 1298–1310.

    PubMed  PubMed Central  CAS  Google Scholar 

  180. Collins K, Mitchell JR. (2002) Telomerase in the human organism. Oncogene 21: 564–579.

    Article  PubMed  CAS  Google Scholar 

  181. Hiyama K, Hiyama E, Ishioka S, et al. (1995) Telomerase activity in small cell and non small cell lung cancer. J. Natl. Cancer Inst. 87: 895–902.

    Article  PubMed  CAS  Google Scholar 

  182. Hirashima T, Yoshitaka O, Nitta T, et al. (2001) Telomerase activity in endoscopically visible lung cancer. Anticancer Res. 21: 3685–3689.

    PubMed  CAS  Google Scholar 

  183. Gomez-Roman JJ, Romero AF, Castro LS, Nieto EH, Fernandez-Luna JL, Val-Bernal JF. (2000) Telomerase activity in pulmonary neuroendocrine tumors: correlation with histologic subtype (MS-0060). Am. J. Surg. Pathol. 24: 417–421.

    Article  PubMed  CAS  Google Scholar 

  184. Champers AF, Matrisian LM. (1997) Changing views of the role of matrix metalloproteinases in metastasis. J. Natl. Cancer Inst. 17: 1260–1270.

    Article  Google Scholar 

  185. Michael M, Babic B, Khokha R, et al. (1999) Expression and prognostic significance of metalloproteinases and their tissue inhibitors in patients with small cell lung cancer. J. Clin. Oncol. 17: 1802–1808.

    Article  PubMed  CAS  Google Scholar 

  186. Andreasen PA, Kjeller L, Christensen L, Duffy MJ. (1997) The urokinase-type plasminogen activator system in cancer metastasis: a review. Int. J. Cancer 72: 1–22.

    Article  PubMed  CAS  Google Scholar 

  187. Bolon I, Devouassoux M, Robert C, Moro D, Brambilla C, Brambilla E. (1997) Expression of urokinase-type plasminogen activator, stromelysin1, stromelysin 3, and matrilysin genes in lung carcinomas. Am. J. Pathol. 150: 1619–1629.

    PubMed  PubMed Central  CAS  Google Scholar 

  188. Robert C, Bolon I, Gazzeri S, Veyrenc S, Brambilla C, Brambilla E. (1999) Expression of plasminogen activator inhibitors 1 and 2 in lung cancer and their role in tumor progression. Clin. Cancer Res. 5: 2094–2102.

    PubMed  CAS  Google Scholar 

  189. Tinnemans MMFJ, Lenders MJH, Ten Velde GPM, Blijham GH, Ramaekers FCS, Schutte B. (1999) Prognostic value of cytokinetic parameters in lung cancer after in vivo bromodeoxyuridine labelling. Anticancer Res. 19: 531–534.

    PubMed  CAS  Google Scholar 

  190. Viren MM, Ojala AT, Kataja VV, Mattila JJ, Koivisto PA, Nikkanen VT. (1997) Flow cytometric analysis of tumor DNA profile related to response to treatment and survival in small cell lung cancer. Med. Oncol. 14: 35–38.

    Article  PubMed  CAS  Google Scholar 

  191. Bravo R, Frank R, Blundell PA, MacDonald-Bravo H. (1987) Cyclin/PCNA is the auxiliary protein of DNA polymerase delta. Nature 326: 515–517.

    Article  PubMed  CAS  Google Scholar 

  192. Brown DC, Gatter KC. (1991) Monoclonal antibody Ki-67: its use in histopathology. Histopathology 17: 489–503.

    Article  Google Scholar 

  193. Bohm J, Koch S, Gais P, Jutting U, Prauer HW, Hofler H. (1996) Prognostic value of MIB-1 in neuroendocrine tumors of the lung. J. Pathol. 178: 402–409.

    Article  PubMed  CAS  Google Scholar 

  194. Arbiser ZK, Arbiser JL, Cohen C, Gal AA. (2001) Neuroendocrine lung tumors: grade correlates with proliferation but not angiogenesis. Mod. Pathol. 14: 1195–1199.

    Article  PubMed  CAS  Google Scholar 

  195. Tungekar MF, Gatter KC, Dunnill MS, Mason DY. (1991) Ki-67 immunostaining and survival in operable lung cancer. Histopathology 19: 545–550.

    Article  PubMed  CAS  Google Scholar 

  196. Costes V, Marty-Ane C, Picot M, et al. (1995) Typical and atypical bronchopulmonary carcinoid tumors: a clinopathologic and Ki-67-labelling study. Hum. Pathol. 26: 740–745.

    Article  PubMed  CAS  Google Scholar 

  197. Hanahan D, Folkman J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorogenesis. Cell 86: 353–364.

    Article  PubMed  CAS  Google Scholar 

  198. Slodkowska J, Sikora J, Androsiuk W, Rudzinski P, Radomyski A. (1999) Lung carcinoids. Tumor angiogenesis in relation to clinopathologic characteristics. Anal. Quant. Cytol. Histol. 21: 267–272.

    PubMed  CAS  Google Scholar 

  199. Eerola A, Soini Y, Paakko P. (2000) A high number of tumor-infiltrating lymphocytes are associated with a small tumor size, low tumor stage, and a favorable prognosis in operated small cell lung carcinoma. Clin. Cancer Res. 6: 1875–1881.

    PubMed  CAS  Google Scholar 

  200. Dvorak HF, Brown LF, Detmar M, Dvorak AM. (1995) Vascular permeability of factor/vascular endothelial growth factor, microvascular hyperpermeability and angiogenesis. Am. J. Pathol. 146: 1029–1039.

    PubMed  PubMed Central  CAS  Google Scholar 

  201. Vaisman N, Gospodarowicz D, Neufeld G. (1990) Characterization of the receptors for vascular endothelial growth factor. J. Biol. Chem. 265: 19461–19469.

    PubMed  CAS  Google Scholar 

  202. Matsuyama W, Hashiguchi T, Mizoguchi A, et al. (2000) Serum levels of vascular endothelial growth factor dependent on the stage progression of lung cancer. Chest 118: 948–951.

    Article  PubMed  CAS  Google Scholar 

  203. Marti HH, Risau W. (1998) Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and receptors. Proc. Natl. Acad. Sci. U. S. A. 95: 15809–15814.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Shen B, Lee DY, Gerber H, Keyr BA, Ferrara N, Zioncheck TF. (1998) Homologous up-regulation of KDR/Flk-1 receptor expression by vascular endothelial growth factor in vitro. J. Biol. Chem. 273: 29979–29985.

    Article  PubMed  CAS  Google Scholar 

  205. Lund EL, Thorsen C, Pedersen MWB, Junker N, Kristjansen PEG. (2000) Relationship between vessel density and expression of vascular endothelial growth factor and basic fibroblast growth factor in small cell lung cancer in vivo and in vitro. Clin. Cancer Res. 6: 4287–4291.

    PubMed  CAS  Google Scholar 

  206. Salven P, Ruotsalainen T, Mattson K, Joensuu H. (1998) High pretreatment serum level of vascular endothelial growth factor (VEGF) is associated with poor outcome in small-cell lung cancer. Int. J. Cancer 79: 144–146.

    Article  PubMed  CAS  Google Scholar 

  207. Fontanini G, Faviana P, Lucchi M, et al. (2002) A high vascular count and overexpression of vascular endothelial growth factor are associated with unfavorable prognosis in operated small cell lung carcinoma. Br. J. Cancer 86: 558–563.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Friesel RE, Maciag T. (1995) Molecular mechanisms of angiogenesis: fibroblast growth factor signaling transduction. FASEB J. 9: 919–925.

    Article  PubMed  CAS  Google Scholar 

  209. Asahara T, Bauters C, Zheng LP, et al. (1995) Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation 92: 365–371.

    Article  CAS  Google Scholar 

  210. Ueno K, Inoue Y, Kawaguchi T, Hosoe S, Kawahara M. (2001) Increased serum levels of basic fibroblast growth factor in lung cancer patients: relevance to response of therapy and prognosis. Lung Cancer 31: 213–219.

    Article  PubMed  CAS  Google Scholar 

  211. Dameron KM, Volpert OV, Tainsky MA, Bouck N. (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265: 981–992.

    Article  Google Scholar 

  212. Loeb LA. (1998) Cancer cells exhibit a mutator phenotype. Adv. Cancer Res. 72: 25–56.

    Article  PubMed  CAS  Google Scholar 

  213. Anbazhagan R, Tihan T, Bornman DM, et al. (1999) Classification of small cell lung cancer and pulmonary carcinoid by gene expression profiles. Cancer Res. 59: 5119–5122.

    PubMed  CAS  Google Scholar 

  214. Sampietro G, Tomasic G, Collini P, et al. (2000) Gene product immunophenotyping of neuroendocrine lung tumors. No linking evidence between carcinoids and small-cell lung carcinomas suggested by multivariate statistical analysis. Appl. Immunohistochem. Mol. Morphol. 8: 49–56.

    PubMed  CAS  Google Scholar 

  215. Colby TV, Wistuba II, Gazdar A. (1998) Precursors to pulmonary neoplasia. Adv. Anat. Pathol. 5: 205–215.

    Article  PubMed  CAS  Google Scholar 

  216. Kawanishi M, Kohno T, Otsuka T, et al. (1997) Allelotype and replication error phenotype of small cell lung carcinoma. Carcinogenesis 18: 2057–2062.

    Article  PubMed  CAS  Google Scholar 

  217. Carey FA, Prasad US, Walker WS, Cameron EWJ, Lamb D, Bird CC. (1992) Prognostic significance of tumor deoxyribonucleic acid content in surgically resected small-cell carcinoma of lung. J. Thorac. Cardiovasc. Surg. 103: 1214–1217.

    PubMed  CAS  Google Scholar 

  218. Kimura T, Sato T, Onodera K. (1993) Clinical significance of DNA measurements in small cell lung cancer. Cancer 72: 3216–3222.

    Article  PubMed  CAS  Google Scholar 

  219. Abe S, Tsuneta Y, Makimura S, Itabishi K, Nagai T, Kawakami Y. (1987) Nuclear DNA content as an indicator of chemosensitivity in small cell carcinoma of the lung. Anal. Quant. Cytol. 9: 425–428.

    CAS  Google Scholar 

  220. El-Naggar A, Ballance W, Abdul Karim F, et al. (1991) Typical and atypical bronchopulmonary carcinoids: a clinopathologic and flow cytometric study. Am. J. Clin. Pathol. 95: 828–834.

    Article  PubMed  CAS  Google Scholar 

  221. Padberg BC, Woenckhaus J, Hilger G, et al. (1996) DNA cytophotometry and prognosis in typical and atypical bronchopulmonary carcinoids. A clinomorphologic study of 100 neuroendocrine lung tumors. Am. J. Surg. Pathol. 20: 8–15.

    Article  Google Scholar 

  222. Redondo M, Concha A, Oldiviela R, et al. (1991) Expression of HLA class I and II antigens in bronchogenic carcinomas: its relationship to cellular DNA content and clinical-pathological parameters. Cancer Res. 51: 4948–4954.

    PubMed  CAS  Google Scholar 

  223. York IA, Rock KL. (1996) Antigen processing and presentation by the class I major histocompatibility complex. Annu. Rev. Immunol. 14: 369–396.

    Article  PubMed  CAS  Google Scholar 

  224. Singal DP, Ye M, Ni J, Snider DP. (1996) Markedly decreased expression of TAP1 and LMP2 genes in HLA class I-deficient human tumor cell lines. Immunol. Lett. 50: 149–154.

    Article  PubMed  CAS  Google Scholar 

  225. Singal DP, Ye M, Qiu X. (1996) Molecular basis for lack of expression of HLA class I antigens in human small-cell lung carcinoma cell lines. Int. J. Cancer 68: 629–636.

    Article  PubMed  CAS  Google Scholar 

  226. Singal DP, Ye M, Bienzle D. (1998) Transfection of TAP 1 gene restores HLA class I expression in human small-cell lung carcinoma. Int. J. Cancer 75: 112–116.

    Article  PubMed  CAS  Google Scholar 

  227. Yasumoto K, Takeo S, Yano T, et al. (1988) Role of tumor-infiltrating lymphocytes in the host defense mechanism against lung cancer. J. Surg. Oncol. 38: 221–226.

    Article  PubMed  CAS  Google Scholar 

  228. Kerr K, Johnson S, Kling J, Kennedy M, Weir J, Jeffrey R. (1998) Partial regression in primary carcinoma of the lung: does it occur? Histopathology 33: 55–63.

    PubMed  CAS  Google Scholar 

  229. Eerola A, Soini Y, Paakko P. (1999) Tumor infiltrating lymphocytes in relation to tumor angiogenesis, apoptosis and prognosis in patients with large cell lung carcinoma. Lung Cancer 26: 73–84.

    Article  PubMed  CAS  Google Scholar 

  230. Nagata S., Golstein P. (1995) The Fas death factor. Science 267: 1449–1456.

    Article  PubMed  CAS  Google Scholar 

  231. Niehans GA, Brunner T, Frizelle SP, et al. (1997) Human lung carcinomas express fas ligand. Cancer Res. 57: 1007–1012.

    PubMed  CAS  Google Scholar 

  232. Fischer J, Schindel M, Stein N, et al. (1995) Selective suppression of cytokine secretion in patients with small cell lung cancer. Ann. Oncol. 9: 921–926.

    Article  Google Scholar 

  233. Vilcek J, Lee T. (1991) Tumor necrosis factor. J. Biol. Chem. 266: 7313–7316.

    PubMed  CAS  Google Scholar 

  234. Haley KJ, Patidar K, Zhang F, Emanuel RL, Sunday ME. (1998) Tumor necrosis factor induces neuroendocrine differentiation in small cell lung cancer cell lines. Am. J. Physiol. 275: 311–321.

    Google Scholar 

  235. Kayser K, Gabius H, Gabius S, Hagemeyer O. (1992) Analysis of tumor necrosis factor-α, lactose-specific and mistletoe lectin-specific binding sites at human lung carcinomas by labelled ligands. Virchows Arch. A Pathol. Anat. Histopathol. 421: 345–349.

    Article  PubMed  CAS  Google Scholar 

  236. Shimura T, Hagihara M, Takebe K, et al. (1994) The study of tumor necrosis factor beta gene polymorphism in lung cancer patients. Cancer 73: 1184–1188.

    Article  PubMed  CAS  Google Scholar 

  237. Fischer J, Schindel M, Bulzebruck H, Lahm H, Krammer P, Drings P. (1997) Decrease of interleukin-2 secretion is a new independent prognostic factor associated with poor survival in patients with small-cell lung cancer. Ann. Oncol. 8: 457–461.

    Article  PubMed  CAS  Google Scholar 

  238. Fischer JR, Schindel M, Bulzebruck H, Lahm H, Krammer PH, Drings P. (2000) Long-term survival in small cell lung cancer patients is correlated with high interleukin-2 secretion at diagnosis. J. Cancer Res. Clin. Oncol. 126: 730–733.

    Article  PubMed  CAS  Google Scholar 

  239. Sarandakou A, Poulakis N, Rizos D, Trakakis E, Phocas I. (1993) Soluble interleukin-2 receptors (sIL-2r) and neuron specific enolase (NSE) in small cell lung carcinoma. Anticancer Res. 13: 173–176.

    PubMed  CAS  Google Scholar 

  240. Zalcman G, Tredaniel J, Schlichtholz B, et al. (2000) Prognostic significance of serum p53 antibodies in patients with limited-stage small cell lung cancer. Int. J. Cancer 89: 81–86.

    Article  PubMed  CAS  Google Scholar 

  241. Mack U, Ukena D, Montenarh M, Sybrecht G. (2000) Serum anti-p53 antibodies in patients with lung cancer. Oncol. Rep. 7: 669–674.

    PubMed  CAS  Google Scholar 

  242. Rosenfeld M, Malats N, Schramm L, et al. (1997) Serum anti-p53 antibodies and prognosis of patients with small-cell lung cancer. J. Natl. Cancer Inst. 89: 381–385.

    Article  PubMed  CAS  Google Scholar 

  243. Jassem E, Bigda J, Dziadziuszko R, et al. (2001) Serum p53 antibodies in small-cell lung cancer: the lack of prognostic relevance. Lung Cancer 31: 17–23.

    Article  PubMed  CAS  Google Scholar 

  244. Murray PV, Soussi T, O’Brien MER, et al. (2000) Serum p53 antibodies: predictors of survival in small-cell lung cancer? Br. J. Cancer 83: 1418–1424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Stavrovskaya AA. (2000) Cellular mechanisms of multidrug resistance of tumor cells. Biochemistry (Mosc) 65: 95–106.

    CAS  Google Scholar 

  246. Rosenberg MF, Mao Q, Holzenburg A, Ford RC, Deeley RG, Cole SP. (2001) The structure of the multidrug resistence protein 1 (MRP1/ABCC1). Crystallization and single-particle analysis. J. Biol. Chem. 276: 16076–16082.

    Article  PubMed  CAS  Google Scholar 

  247. Zaman GJR, Flens MJ, van Leusden MR, et al. (1994) The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump. Proc. Natl. Acad. Sci. U. S. A. 91: 8822–8826.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Narasaki F, Matsuo I, Ikuno N, Fukuda M, Soda H, Oka M. (1996) Multidrug resistance-associated protein (MRP) gene expression in human lung cancer. Anticancer Res. 16: 2079–2082.

    PubMed  CAS  Google Scholar 

  249. Young LC, Campling BG, Voskoglou-Nomikos T, Cole SPC, Deeley RG, Gerlach JH. (1999) Expression of multidrug resistance protein-related genes in lung cancer: Correlation with drug response. Clin. Cancer Res. 5: 673–680.

    PubMed  CAS  Google Scholar 

  250. Bradley G, Juranka P, Ling V. (1988) Mechanism of multidrug resistance. Biochim. Biophys. Acta 948: 87–128.

    PubMed  CAS  Google Scholar 

  251. Noonan KE, Beck C, Holzmayer TA, et al. (1990) Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction. Proc. Natl. Acad. Sci. U. S. A. 87: 7160–7164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. Milroy R, Plumb JA, Batstone P, et al. (1992) Lack of expression of P-glycoprotein in 7 small cell lung cancer cell lines established both from untreated and from treated patients. Anticancer Res. 12: 193–200.

    PubMed  CAS  Google Scholar 

  253. Campling BG, Young LC, Baer KA, et al. (1997) Expression of the MRP and MDR1 multidrug resistance genes in small cell lung cancer. Clin. Cancer Res. 3: 115–122.

    PubMed  CAS  Google Scholar 

  254. Kreisholt J, Sorensen M, Jensen P, Andersen C, Sehested M. (1998) Immunohistochemical detection of DNA topoisomerase II, P-glycoprotein and multidrug resistance protein (MRP) in small-cell and non-small-cell lung cancer. Br. J. Cancer 77: 1469–1473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Holzmayer T, Hilsenbeck S, Von Hoff D, Roninson I. (1992) Clinical correlates of MDR1 (P-glycoprotein) gene expression in ovarian and small-cell lung carcinomas. J. Natl. Cancer Inst. 84: 1486–1491.

    Article  PubMed  CAS  Google Scholar 

  256. Savaraj N, Wu C, Xu R, et al. (1997) Multidrug-resistant gene expression in small-cell lung cancer. Am. J. Clin. Oncol. 20: 398–403.

    Article  PubMed  CAS  Google Scholar 

  257. Poupon MF, Arvelo F, Goguel AF, et al. (1993) Response of small-cell lung cancer xenografts to chemotherapy: multidrug resistance and direct clinical correlates. J. Natl. Cancer Inst. 85: 2023–2029.

    Article  PubMed  CAS  Google Scholar 

  258. Zhang K, Mack P, Wong KP. (1998) Glutathione-related mechanisms in cellular resistance to anticancer drugs. Int. J. Oncol. 12: 871–882.

    PubMed  CAS  Google Scholar 

  259. Cole SPC, Downes HF, Mirski SEL, Clements DJ. (1990) Alterations in glutathione and glutathione-related enzymes in a multidrug resistant small cell lung cancer cell line. Mol. Pharmacol. 37: 192–197.

    PubMed  CAS  Google Scholar 

  260. Campling BG, Baer K, Baker HM, Lam YM, Cole SPC. (1993) Do glutathione and related enzymes play a role in drug resistance in small cell lung cancer cell lines? Br. J. Cancer 68: 327–335.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  261. Wang J. (1996) DNA topoisomerases. Annu. Rev. Biochem. 65: 635–692.

    Article  PubMed  CAS  Google Scholar 

  262. Hwang J, Hwong C. (1994) Cellular regulation of mammalian DNA topoisomerases. Adv. Pharmacol. 29A: 167–189.

    Article  PubMed  CAS  Google Scholar 

  263. Syahruddin E, Oguri T, Takahashi T, Isobe T, Fujiwara Y, Yamakido M. (1998) Differential expression of DNA topoisomerase IIα: and IIβ genes between small cell and non-small cell lung cancer. Jpn. J. Cancer Res 89: 855–861.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Giaccone G, Gazdar AF, Beck H, Zunino F, Capranico G. (1992) Multidrug sensitivity phenotype of human lung cancer cells associated with topoisomerase II expression. Cancer Res. 52: 1666–1674.

    PubMed  CAS  Google Scholar 

  265. Withoff S, De Vries E, Keith W, et al. (1996) Differential expression of DNA topoisomerase IIα and − β in P-gp and MRP-negative VM26, mAMSA and mitoxantrone-resistant sublines of the human SCLC cell line GLC4. Br. J. Cancer 74: 1869–1876.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Resl M, Simek J, Bukac J, Rothrockel P, Siller J. (2001) DNA topoisomerase II-alpha in pulmonary carcinoid tumors. Pathol. Res. Pract. 197: 169–173.

    Article  PubMed  CAS  Google Scholar 

  267. Kasahara K, Fujiwara Y, Nishio K, et al. (1991) Metallothionein content correlates with the sensitivity of human small cell lung cancer cell lines to cisplatin. Cancer Res. 51: 3237–3242.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Zoe Christoni for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilis G. Gorgoulis.

Additional information

Contributed by A.G. Papavassiliou

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koutsami, M.K., Doussis-Anagnostopoulou, I., Papavassiliou, A.G. et al. Genetic and Molecular Coordinates of Neuroendocrine Lung Tumors, with Emphasis on Small-cell Lung Carcinomas. Mol Med 8, 419–436 (2002). https://doi.org/10.1007/BF03402022

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402022

Keywords

Navigation