Skip to main content
Log in

A model investigation of the process of phase formation in photochromic glasses

Part 1 Solubility of AgCl in sodium borate melts and experimental results on the kinetics of phase formation

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The formation of the AgCl phase in technical photochromic glasses is investigated using a model sodium borate glass. The temperature dependence of the solubility of AgCl in the melt is established and the solubility data are interpreted by a simple variant of the theory of regular solutions and thus the thermodynamic driving force of the process is determined. The kinetics of nucleation, growth and overall phase formation are followed by X-ray methods, electron microscopy and nephelometry. The formation of the AgCl-phase in the model melt can be described as a process of binodal liquid phase separation. The initial stages of this process display the characteristic features of non-steady state nucleation. In the advanced stages of AgCl formation saturation regions in Ostwald ripening curves are observed which cannot be explained by the theory of Lifshitz-Slyozov developed for a Newtonian fluid while glass forming systems behave near Tg as viscoelastic systems. The general validity of the results obtained for the present system is discussed and analogies with AgCl segregation in other photochromic glasses is discussed. The quantitative description of Ostwald ripening in viscoelastic media is attempted in a following contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. TSEKHOMSKII, Fizika Khim. Stekla 4 (1978) 3.

    Google Scholar 

  2. R. J. ARAUJO, Contemp. Phys. 21 (1980) 77.

    Article  Google Scholar 

  3. G. GLIEMEROTH, Glastechn. Ber. 54 (1981) 77.

    Google Scholar 

  4. L. FERLEY, T. MATTERN and G. LEHMANN, J. Non-Crystalline Solids 92 (1987) 107.

    Article  Google Scholar 

  5. H. BACH and G. GLIEMEROTH, Glastechn. Ber. 44 (1971) 305.

    Google Scholar 

  6. I. FANDERLIK and L. PROD’HOMME, Verres et Refract. 27 (1973) 97.

    Google Scholar 

  7. I. FANDERLIK, Sklar a Keram. 23 (1973) 165.

    Google Scholar 

  8. J. J. HAMMEL and T. E. MCGARY, in “Reactivity of Solids”, edited by J. W. Mitchell (Wiley, New York, 1969) p. 695.

    Google Scholar 

  9. G. S. GALAKHOVA, N. M. PAVLUSHKIN and M. V. ARTAMONOVA, Trudy Mosk. Khim. Techn. Inst. im. Mendeleeva 63 (1969) 8.

    Google Scholar 

  10. G. TAMMAN, “Der Glaszustand” (L. Voss Verrlag, Leipzig, 1933).

    Google Scholar 

  11. I. GUTZOW, Contemp. Phys. 21 (1980) 121.

    Article  Google Scholar 

  12. R. R. SHAW and D. R. UHLMANN, J. Amer. Ceram. Soc. 51 (1968) 377.

    Article  Google Scholar 

  13. W. SKATULLA, W. VOGEL and H. WESSEL, Silikattechn. 9 (1958) 51.

    Google Scholar 

  14. M. H. C. BAETEN, H. N. STEIN and J. M. STEVELS, Silicates Ind. 37 (1972) 33.

    Google Scholar 

  15. R. PASCOVA and I. GUTZOW, Phys. Chem. Glasses 27 (1986) 140.

    Google Scholar 

  16. R. PASCOVA, I. GUTZOW and J. SCHMELZER, J. Mater. Sci. 25 (1990) 920.

    Google Scholar 

  17. R. PASCOVA and I. GUTZOW, Glastechn. Ber. 56 (1983) 324.

    Google Scholar 

  18. D. S. BELYANKIN, V. V. LAPIN and N. A. TOROPOV, “Fiziko-khimitsheskie Systemi Sieikatnoi Tekhnologii” (Promstroiizdat, Moskva, 1954) p. 50.

    Google Scholar 

  19. R. BECKER, Ann. Phys. 32 (1938) 128.

    Article  Google Scholar 

  20. M. VOLMER, “Kinetik der Phasenbildung” (Th. Steinkopf, Dresden-Leipzig, 1939).

    Google Scholar 

  21. M. KAHLWEIT, Z. Phys. Chem. NF 28 (1961) 245.

    Article  Google Scholar 

  22. S. V. NEMILOV, Neorg. Mater. 2 (1966) 349.

    Google Scholar 

  23. O. V. MAZURIN, M. V. STRELZINA and T. P. SHVAIKO-SHVAIKOVSKAYA, “Svoistva Stekol i Stekloobrazuyushtich Rasplavov” (Nauka, Leningrad, 1975) Vol. 2, p. 135.

    Google Scholar 

  24. A. TAYLOR, “X-ray Metallography” (Wiley, New York, 1965) Ch. 2.

    Google Scholar 

  25. A. GUINER, “Theorie of Technique de la Crystallographie”, 2nd edition (Dunod, Paris, 1956) p. 68.

    Google Scholar 

  26. A. A. SHISHKLOVSKII, “Prikladnaja Optika (Fizmatgiz, Moskva, 1961) p. 705.

    Google Scholar 

  27. C. V. DAVIES and G. H. NANCOLAS, Trans. Farad. Soc. 51 (1955) 823.

    Article  Google Scholar 

  28. N. S. ANDREEV, O. V. MAZURIN, E. A. PORAIKOSHITZ, G. P. ROSCOVA and V. N. FILIPOVITSH, “Yavleniya Likvatzii v Steklach” (Nauka, Moskva, 1974).

    Google Scholar 

  29. I. M. LIFSHITZ and V. V. SLYOZOV, J. Phys. Chem. Solids 19 (1961) 35.

    Article  Google Scholar 

  30. E. M. LIFSHITZ and L. P. PITAEVSKI, “Fizitsheskaja Kinetika” (Nauka, Moskva, 1979) p. 509.

    Google Scholar 

  31. C. WAGNER, Zs. Elektrochem. Ber. Bunsenges. Phys. Chem. 65 (1961) 581.

    Google Scholar 

  32. M. REINER, in “Rheology, Theory and Applications”, edited by F. R. Eirich, Vol. 1 (Academic Press, New York, 1956) Ch. 2.

    Google Scholar 

  33. T. ALFREY, “Mechanical Behaviour of High Polymers” (Interscience, New York, 1955) p. 53.

    Google Scholar 

  34. A. M. FREUDENTHAL, “Inelastic Behaviour of Engineering Materials and Structures” (Wiley, New York, 1955) Ch. 6.

    Google Scholar 

  35. W. L. WILLKINSON, “Non-Newtonian Fluids” (Pergamon Press, London, 1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pascova, R., Gutzow, I. & Tomov, I. A model investigation of the process of phase formation in photochromic glasses. J Mater Sci 25, 914–920 (1990). https://doi.org/10.1007/BF03372179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03372179

Keywords

Navigation