Skip to main content
Log in

A wheat disease resistance gene analog of the NBS-LRR class: identification and analysis

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

The objective of this work was to obtain a resistance gene analog from the TcLr35 wheat line. The 5’ and 3’ ends of the resistance gene homology fragment S2A2 from TcLr35 were obtained by rapid amplification cDNA ends (RACE), and a 3476-bp full length cDNA was obtained using gene specific primers based on the spliced sequence. Its deduced 866 amino acid sequence has the characteristic NBS-LRR domains of plant resistance gene products and includes a coiled-coil (CC) region typical of monocots. The genomic DNA sequence shows the presence of three exons and two short introns upstream of the predicted stop codon. BLASTp analysis indicates a considerable identity of S2A2 with a cloned barley NBS-LRR resistance gene homology sequence and a lower similarity with wheat leaf rust resistance genes Lr1, Lr21, Lr34, and Lr10. The S2A2 gene appeared not to be induced by Puccinia triticina and was a constitutive gene with low abundance in the wheat leaf tissue by semi-quantitative RT-PCR analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alliffe MA & Lagudah ES, 2004. Molecular genetics of disease resistance in cereals. Ann Botany 94, 765–773.

    Article  Google Scholar 

  • Bai J, Pennill LA, Ning J, Lee SW, Ramalingam J, Webb CA, Zhao B, Sun Q, Nelson JC, Leach JE & Hulber SH, 2002. Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res 12, 1871–1884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calenge F, Linden Van der CG, Schouten E, Arkel GV & Durel CD, 2005. Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. Theor Appl Genet 110, 660–668.

    Article  CAS  PubMed  Google Scholar 

  • Cloutier S, McCallum BD, Loutrec C, Banks TW, Wicker T, Feuillet C, Keller B & Jordan MC, 2007. Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol 65, 93–106.

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL & Jones JDG, 2001. Plant pathogens and integrated defence responses to infection. Nature 411, 826–833.

    Article  CAS  PubMed  Google Scholar 

  • Dildirligi M & Gill KS, 2004. Identification and analysis of expressed resistance gene sequences in wheat. Plant Mol Biol 48, 575–608.

    Article  Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A & Keller B, 2003. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100, 15253–15258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gennaro A, Koebner R & Ceoloni C, 2009. A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat. Funct Integr Genomics 9, 325–334.

    Article  CAS  PubMed  Google Scholar 

  • Hammond-Kosack KE & Parker JE, 2003. Deciphering plant-pathogen communications: free perspectives for molecular resistance breeding. Curr Opin Biotechnol 14, 177–193.

    Article  CAS  PubMed  Google Scholar 

  • He LM, Du CG, Covaleda L, Xu ZY, Robinson AF, Yu JZ, Kohel RJ & Zhang HB, 2004. Cloning, characterization, and evolution of the NBS-LRR-encoding resistance gene analogue family in polyploidy cotton (Gossypium hirsutum L). Mol Plant Microbe Interact 17, 1234–1241.

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Steven A, Wanlong L, Fellers JP, Trick HN & Gill BS, 2003. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164, 655–664.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Julia G, 1999. Development of a molecular marker for rust resistance genes Sr39 and Lr35 in wheat breeding lines. Electron J Biotech 2, 35–40.

    Google Scholar 

  • Kerber ER & Dyck PL, 1990. Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seeding stem rust resistance from an amphiploid of Aegilops speltoides x Triti-cum monococcum. Genome 33, 530–537.

    Article  CAS  Google Scholar 

  • Kolmer JA, Jin Y & Long DL, 2007. Wheat leaf and stem rust in the United States. Aust J Agric Res 58, 631–638.

    Article  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Selter LL & Keller B, 2009. A multi-pathogen resistance QTL in wheat is controlled by a single gene. Science 323, 1360–1363.

    Article  CAS  PubMed  Google Scholar 

  • Linden C, Wouters D, Mihalka V, Kochieva E & Smulders V, 2004. Efficient targeting of plant disease resistance loci using NBS-profiling. Theor Appl Genet 109, 384–393.

    Article  PubMed  Google Scholar 

  • Lukasik E & Takken FFW, 2009. STANDing strong, resistance proteins instigators of plant defence. Curr Opin Plant Biol 12, 1–10.

    Article  Google Scholar 

  • McHale L, Tan X, Koehl P & Michelmore RW, 2006. Plant NBS-LRR proteins: adaptable guards. Genome Biol 7, 212.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW & Young ND, 1999. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20, 317–332.

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA, Wellings CR & Park RF, 1995. Wheat rusts: an atlas of resistance genes. Kluwer Academic Publishers, Dordrecht.

    Book  Google Scholar 

  • Pan Q, Wendel J & Fluhr R, 2000. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol 50, 203–213.

    CAS  PubMed  Google Scholar 

  • Seyfarth R, Feuillet C, Schachermayr G, Winzeler M & Keller B, 1999. Development of a molecular marker for the adult plant leaf rust resistance gene Lr35 in wheat. Theor Appl Genet 99, 554–560.

    Article  CAS  PubMed  Google Scholar 

  • Tanhuanpaa P, 2004. Identification and mapping of resistance gene analogs and a white rust resistance locus in Brassica rapa ssp. Oleifera. Theor Appl Genet 108, 1039–1046.

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Fan L, Thurau T, Jung C & Cai D, 2004. The absence of TIR-type resistance gene analogues in the sugar beet (Beta vulgaris L.) genome. J Mol Evol 58, 40–53.

    Article  CAS  PubMed  Google Scholar 

  • Wang HY, Yang WX & Liu DQ, 2006. Isolation and characterization of NBS-LRR resistance gene homology sequences from wheat. Sci Agric Sinica 39, 1558–1564.

    CAS  Google Scholar 

  • Xu Q, Wen X & Deng XX, 2005. Isolation of TIR and non TIR NBS-LRR resistance gene analogues and identification of molecular markers linked to a powdery mildew resistance locus in chestnut rose (Rosa roxburghii Tratt). Theor Appl Genet 111, 819–830.

    Article  CAS  PubMed  Google Scholar 

  • Yu YG, Buss GR & Maroof MA, 1996. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Sci USA 93, 11751–11756.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Q. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H.Y., Liu, D.Q. & Yang, W.X. A wheat disease resistance gene analog of the NBS-LRR class: identification and analysis. J Plant Dis Prot 118, 63–68 (2011). https://doi.org/10.1007/BF03356383

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356383

Key words

Navigation