Skip to main content
Log in

Fatigue Life Prediction in Aluminum Shape Castings

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Increasing use of aluminum shape castings in automotive and aerospace industries has drawn great attention to fatigue properties of cast aluminum components. The fatigue resistance of aluminum castings strongly depends upon the presence of casting flaws and characteristics of microstructural constituents. The existence of casting flaws significantly reduces fatigue crack initiation life. In the absence of casting flaws, however, crack initiation occurs at the fatigue-sensitive microstructural constituents. Cracking and decohesion of large silicon and Ferich intermetallic particles and crystallographic shearing from persistent slip bands in the aluminum matrix play an important role in crack initiation. This paper reviews the latest understanding in fatigue crack initiation mechanisms in cast aluminum alloys and presents multi-scale fatigue (MSF) life models for aluminum castings that account for multi-scale casting flaws and microstructural constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jambor, A., Beyer, M., Materials and Design, 18, 4/6, pp. 203–209 (1997).

    Article  Google Scholar 

  2. Miller, W.S., Materials Science and Engineering A, 208, pp. 37–49 (2000).

    Article  Google Scholar 

  3. Laz, P.J., Int. J. Fatigue, 4, pp. 263–270 (1998).

    Article  Google Scholar 

  4. Mayer, H., Int. J. Fatigue, 25, pp. 245–256 (2003).

    Article  Google Scholar 

  5. Wang, Q.G., Apelian, D., Griffiths, J.R., Advances in Aluminum Casting Technology, eds.: M. Tiryakioglu, J. Campbell, ASM International, Materials Park, OH, pp. 217–224 (1998).

  6. Barsom, J.M. Rolfe, S.T., Fracture and Fatigue Control In Structures, 3rd ed., ASTM, pp. 196–197 (1999).

  7. Stephens, R.I., Metal Fatigue in Engineering, 2nd ed., John Wiley and Sons, Inc., pp. 144–156 (2001).

  8. Stanzl-Tschengg, S.E., Int. J. Fatigue, 17,2, pp. 149–155 (1995).

    Article  Google Scholar 

  9. Avalle, M., Int. J. of Fatigue, 24, pp. 1–9 (2002).

    Article  Google Scholar 

  10. Wang, Q.G., Apelian, D., Lados, D., Journal of Light Metals, 1, pp. 73–84 (2001).

    Article  Google Scholar 

  11. Caton, M.J., PhD Dissertation, University of Michigan (2001).

  12. Caton, M.J., Jones, J.W., Boileau, J.M., Allison, J.E., Met Mater Trans A., 30A, pp. 3055–3068 (1999).

    Article  Google Scholar 

  13. Buffie’re, J.Y., Savelli, S., Jouneau, P.H., Materials Science and Engineering A, 316, pp. 115–126 (2001).

    Article  Google Scholar 

  14. Couper, M.J., Neeson, A.E., Griffiths, J.R., Fatigue Fract. Engng Mater. Struct, 3, pp. 213–227 (1990).

    Article  Google Scholar 

  15. Chan, Kwai S., Jones, P.E., Wang, Q.G., Materials Science and Engineering A, 341, pp. 18–34 (2003).

    Article  Google Scholar 

  16. Wang, Q.G., Proceedings of Materials Lifetime Science and Engineering, edited by P.K. Liaw, R.A. Buchanan, D.L. Klarstrom, R.P. Wei, D.G. Harlow, P.F. Tortorelli, TMS, The Minerals, Metals and Materials Society, pp. 211–221 (2003).

  17. Wang, Q.G., Apelian, D., Lados, D., Journal of Light Metals, 1, pp. 85–97 (2001).

    Article  Google Scholar 

  18. Han, S.-W., Kumai, S., Sato, A., Materials Science and Engineering A, 332, pp. 56–63 (2002).

    Article  Google Scholar 

  19. Lee, M.H., Kim, J.J., Kim, K.H., Materials Science and Engineering A. 340, pp. 123–129 (2003).

    Article  Google Scholar 

  20. Lados, D. A., Apelian, D., Materials Science and Engineering A, 385, pp. 200–211 (2004).

    Google Scholar 

  21. Yi, J.Z., Gao, Y.X., Lee, P.D., Lindley, T.C., Materials Science and Engineering A, 386, pp. 396–407 (2004).

    Article  Google Scholar 

  22. Verdu, C., Cercueil, H., Communal, S., Mater. Sci. Forum, 217, p. 1449 (1996).

    Article  Google Scholar 

  23. Evans, W.J., Jones, H.V., Spittle, J.A., Brown, S.G.R., Proceedings of the 10th Conference on the Strength of Materials, Oikawa (ed.), The Japan Institute of Metals, Sendai, p. 501 (1994).

  24. Call, K., Fatigue Fract Eng. Mater Stuct., 23, pp. 159–172 (2000).

    Article  Google Scholar 

  25. Lee, F.T., Major, J.F., Samuel, F.H., Fatigue Fract. Eng. Mater. Struct., 18, (3, pp. 385–396 (1995).

    Article  Google Scholar 

  26. Lee, F.T., Major, J.F., Samuel, F.H., Metall, Mater, Trans, A, 26, pp. 1553–1570 (1995).

    Article  Google Scholar 

  27. Laird, C., Fatigue Crack Propagation (ASTM STP 415. ASTM), 196, pp. 131–168.

  28. Hussain, K., Engineering Fracture Mechanics, 4, pp. 327–354 (1997).

    Article  Google Scholar 

  29. Socie, D.F., Exp. Mech., 17, p. 50 (1977).

    Article  Google Scholar 

  30. Wang, Q.G., Jones, P.E., Metall. Mater. Trans. B, 38, 4, pp. 615–622 (2007).

    Article  Google Scholar 

  31. Wang, Q.G., Jones, P.E., SAE Int. J. Mater. Manuf. 4, pp. 289–297 (SAE doi:10.4271/2011-01-0193) (June, 2011).

    Article  Google Scholar 

  32. Suresh, S., Fatigue of Materials, eds.: E.A. Davis, I.M. Ward, Cambridge University Press (1991).

  33. Wang, Q.G., Jones, P.E., GM Powertrain Technical Report # 00 — 002 (2000).

  34. Wang, Q.G., Jones, P.E., U.S. Patent 7623973 B1 (Nov. 24, 2009).

  35. Murakami, Y., Endo, M., Int. J. Fatigue, 16, pp. 163–182 (1994).

    Article  Google Scholar 

  36. Beretta, S., Blarasin, A., Endo, M., Giunti, T., Murakami, Y., Int. J. Fatigue, 19, no. 4, pp. 319–333 (1997).

    Article  Google Scholar 

  37. Shiozawa, K., Tohda, Y., Sun, S-M., Fatigue Fract. Engg. Mater. Struct, 20, no. 2, pp. 237–247 (1997).

    Article  Google Scholar 

  38. Gumbel, E.J., Statistics of Extremes, cited by Y. Murakami et al., 1994; S. Beretta et al., 1997; K. Shiozawa et al., 1997, Columbia University Press, New York (1957).

    Google Scholar 

  39. Lawless, J.F., Statistical Models and Methods for Lifetime Data, Wiley, New York (1982).

    Google Scholar 

  40. Nelson, W., Statistical Analysis of Fatigue Data, Wiley, New York (1982).

    Google Scholar 

  41. Simiu E., Scanlan, R., Wind Effects on Structure, Wiley, New York (1986).

    Google Scholar 

  42. Murakami, Y., Toriyama, T., Coudert, E.M., J. Testing Evaluation, 22, p. 318 (1994).

    Article  Google Scholar 

  43. Murakami, Y., Uyado, T., JSME Trans., 55A, cited by T. Kobayashi et al., (1999). (1989), pp. 213–221 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Jones, P.E. Fatigue Life Prediction in Aluminum Shape Castings. Inter Metalcast 8, 29–38 (2014). https://doi.org/10.1007/BF03355588

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03355588

Keywords

Navigation