Skip to main content
Log in

Calcium metabolism of intact and thyroparathyroidectomized rats fed a bicarbonate enriched diet

  • Comment
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Rats fed a bicarbonate-enriched diet become alkalotic during their feeding period (ca. 10 h/day). Alkalosis produced a significant reduction in the plasmatic concentration of ionized calcium and increased parathyroid hormone secretion confirmed by concurrent hypophosphatemia and increased urinary excretion of cAMP. Three weeks of treatment produced, however, a significant reduction of bone Ca resorption. The increased endogenous fecal excretion of calcium counteracted the enhancement of true calcium absorption. No significant change in the skeletal calcium mass was observed. Thyroparathyroidectomized rats fed the alkaline diet reduced further their rate of bone Ca resorption and increased significantly their skeletal calcium mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greenberg A.J., McNamara H., McCrory W.W. Metabolic balance studies in primary renal tubular acidosis. Effects of acidosis on external calcium and phosphorus balances. J. Pediatr. 79: 610, 1966.

    Article  Google Scholar 

  2. Litzow J.R., Lemman J., Lennon E.J. The effect of treatment of acidosis and calcium balance in patients with azotemic renal disease. J. Clin. Invest. 46: 280, 1967.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Makoff D.L., Gordon A., Franklin S.S., Gerstein AR., Maxwell M.H. Chronic calcium carbonate therapy in uremia. Arch. Intern. Med. 123: 15, 1969.

    Article  PubMed  CAS  Google Scholar 

  4. Hossain M. The osteomalacia syndrome after colocystoplasty; a cure with sodium bicarbonate alone. J. Urol. 42: 243, 1970.

    Article  CAS  Google Scholar 

  5. Richards P., Chamberlain M.J., Wrong O.M. Treatment of osteomalacia of renal tubular acidosis with sodium bicarbonate alone. Lancet 2: 994, 1972.

    Article  PubMed  CAS  Google Scholar 

  6. Barzel U.S. Alkali therapy in immobilitation osteoporosis. Isr. J. Med. Sci 7: 299, 1971.

    Google Scholar 

  7. Barzel U.S., Jowsey J. The effects of chronic acid and alkali administration on bone turnover in adult rats. Clin. Sci. 36: 517, 1969.

    PubMed  CAS  Google Scholar 

  8. Orsatti M.B., Fucci L.L., Valenti J.L., Puche R.C. The effect of bicarbonate feeding on immobilization osteoporosis in the rat. Calcif. Tissue Res. 21: 195, 1976.

    Article  PubMed  CAS  Google Scholar 

  9. Kaplan E.L, Peskin G.W., Jaffe B.M. The effects of acute metabolic acid-base changes on secretion of gastrin and parathyroid hormone. Surgery 72: 53, 1972.

    PubMed  CAS  Google Scholar 

  10. Bernhart F.W., Tomarelli M.R. A salt mixture supplying the National Research Council estimates of the mineral requirements of the rat. J. Nutr. 89: 495, 1966.

    PubMed  CAS  Google Scholar 

  11. Trucco V.H., Morini J.C., Londner M.V. Renal concentrating ability of rats loaded with bicarbonate. Acta Physiol. Lat. Am. 23: 132, 1973.

    PubMed  CAS  Google Scholar 

  12. Ballina J.C., Vidal M.C., Puche R.C. Renal concentrating ability of rats fed a sodium bicarbonate enriched diet. Acta Physiol. Lat. Am. 34: 71, 1984.

    Google Scholar 

  13. Willis J.-B. Determination of calcium and magnesium in urine by atomic absorption spectroscopy. Anal. Chem. 33: 556, 1961.

    Article  CAS  Google Scholar 

  14. Aubert P.P., Milhaud D. Methode de mesure des principales voies du metabolism calcique chez l’homme. Biochem. Biophys. Acta 39: 122, 1960.

    Article  PubMed  CAS  Google Scholar 

  15. Allen R.J. The estimation of phosphorus. Biochem. J. 34: 858, 1940.

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Kingsley G.R., Robnett O. Further studies on a new dye method for the direct spectrophotometric determination of calcium. Am. J. Clin. Pathol. 29: 171, 1958.

    PubMed  CAS  Google Scholar 

  17. Gilman G.A. A protein binding assay for adenosine 3’ 5’-cyclic monophosphate. Proc. Natl. Acad. Sci. USA 67: 305, 1970.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Snedecor G.W. Statistical methods. Iowa State University Press, Iowa, ed. 5, 1956.

    Google Scholar 

  19. Raisz L.G. Bone resorption in tissue culture: factors influencing the response to parathyroid hormone. J. Clin. Invest. 44: 103, 1965.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Hughes M.R., Brumbaugh P.F., Haussler M.R., Wergedal J.E., Baylink D.J. Regulation of serum 1, 25-dihydroxyvitamin D3 by calcium and phosphate in the rat. Science 190: 578, 1975.

    Article  PubMed  CAS  Google Scholar 

  21. Haussler M.R., Boyce D.W., Littledike E.T., Rasmussen H. A rapidly acting metabolite of vitamin D3. Proc. Natl. Acad. Sci. USA 68: 177, 1971.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Holick M.F., Schnoes H.K., DeLuca H.F. Identification of 1, 25-dihydroxychole calciferol, a form of vitamin D3 metabolically active in the intestine. Proc. Natl. Acad. Sci. USA 68: 803, 1971.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballina, J.C., Di Masso, R. & Puche, R.C. Calcium metabolism of intact and thyroparathyroidectomized rats fed a bicarbonate enriched diet. J Endocrinol Invest 8, 171–174 (1985). https://doi.org/10.1007/BF03350677

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03350677

Key-words

Navigation