Skip to main content
Log in

Acid-sensing pathways in rat gastrointestinal mucosa

  • Brain-gut relations, basics and clinics, from the viewpoint of neurogastroenterology
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

The gastrointestinal mucosa serves as the interface between the luminal contents, including nutrients and injurious substances, and submucosal structures. Secreted gastric acid is one of the principal injurious components of the luminal contents. To be protected against harm from this acid, the epithelium has an “early warning” system that can activate potent defense mechanisms. We studied the mechanisms that defend the epithelium against luminal acid-induced injury, including the regulation of epithelial intracellular pH (pHi), blood flow, and mucus gel secretion in the perfused rat duodenum, and the pathways involved in the activation and regulation of these mechanisms. Physiological concentrations of luminal acid acidified the epithelial cells and increased blood flow (hyperemic response) and mucus gel thickness. The hyperemic response to acid was abolished by inhibitors of the Na+/H+ exchange, vanilloid receptors (VR), calcitonin gene-related peptide (CGRP) receptors, and nitric oxide (NO) synthase, and also by sensory afferent denervation, but not by pretreatment with a nonselective cyclooxygenase (COX) inhibitor. Mucus secretion in response to luminal acid was delayed by an interruption to the capsaicin pathway, which includes VR, capsaicin-sėnsitive afferent nerves, CGRP, and NO, and was abolished by COX inhibition. These observations support the hypothesis that the capsaicin pathway is an acid-sensing pathway that promotes hyperemia and mucus secretion in response to luminal acid. The COX pathway is a secondary regulatory system for mucus secretion. A similar acid-sensing capsaicin pathway is also present in the colon, suggesting that the gastrointestinal mucosa “tastes” luminal acidity through epithelial-VR communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen A, Flemström G, Garner A, Kivilaakso E. Gastroduodenal mucosal protection. Physiol Rev 1993;73:823–57.

    PubMed  CAS  Google Scholar 

  2. Kaunitz JD, Akiba Y. Integrated duodenal protective response to acid. Life Sei 2001;69:3073–81.

    Article  CAS  Google Scholar 

  3. Rhodes J, Apsimon HT, Lawrie JH. pH of the contents of the duodenal bulb in relation to duodenal ulcer. Gut 1966;7:502–8.

    Article  PubMed  CAS  Google Scholar 

  4. Press AG, Hauptmann IA, Hauptmann L, et al. Gastrointestinal pH profiles in patients with inflammatory bowel disease. Aliment Pharmacol Ther 1998;12:673–8.

    Article  PubMed  CAS  Google Scholar 

  5. Holzer P. Neural emergency system in the stomach. Gastroenterology 1998;114:823–39.

    Article  PubMed  CAS  Google Scholar 

  6. Leung FW. Primary sensory nerves mediate in part the protective mesenteric hyperemia after intraduodenal acidification in rats. Gastroenterology 1993; 105:1737–45.

    PubMed  CAS  Google Scholar 

  7. Takeuchi K, Matsumoto J, Ueshima, Ohuchi T, Okabe S. Induction of duodenal ulcers in sensory deafferented rats following histamine infusion. Digestion 1992;51:203–10.

    Article  PubMed  CAS  Google Scholar 

  8. Akiba Y, Kaunitz JD. Regulation of intracellular pH and blood flow in rat duodenal epithelium in vivo. Am J Physiol 1999;39:G293–302.

    Google Scholar 

  9. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997;389:816–24.

    Article  PubMed  CAS  Google Scholar 

  10. Tominaga M, Caterina MJ, Malmberg AB, et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 1998;21:531–43.

    Article  PubMed  CAS  Google Scholar 

  11. Franco-Cereceda A, Kallner G, Lundberg JM. Capsazepine-sensitive release of calcitonin gene-related peptide from C-fibre afferents in the guinea-pig heart by low pH and lactic acid. Eur J Pharmacol 1993;238:311–6.

    Article  PubMed  CAS  Google Scholar 

  12. Geppetti P, Del Bianco E, Patacchini R, Santicioli P, Maggi CA, Tramontana M. Low pH-induced release of calcitonin gene-related peptide from capsaicin-sensitive sensory nerves: mechanism of action and biological response. Neuroscience 1991;41:295–301.

    Article  PubMed  CAS  Google Scholar 

  13. Hua XY, Wong S, Jinno S, Yaksh TL. Pharmacology of calcitonin gene-related peptide release from sensory terminals in the rat trachea. Can J Physiol Pharmacol 1995;73:999–1006.

    Article  PubMed  CAS  Google Scholar 

  14. Franco-Cereceda A, Kallner G, Lundberg JM. Cyclo-oxygenase products released by low pH have capsaicin-like actions on sensory nerves in the isolated guinea pig heart. Cardiovasc Res 1994;28:365–9.

    Article  PubMed  CAS  Google Scholar 

  15. Akiba Y, Guth PH, Engel E, Nastaskin I, Kaunitz JD. Acid-sensing pathways of rat duodenum. Am J Physiol 1999;277:G268–74.

    PubMed  CAS  Google Scholar 

  16. Lang IM, Tansy MF. Mechanisms of the secretory and motor responses of the Brunner’s gland region of the intestines to duodenal acidification. Pflugers Arch 1983;396:115–20.

    Article  PubMed  CAS  Google Scholar 

  17. Sababi M, Nilsson E, Holm L. Mucus and alkali secretion in the rat duodenum: effects of indomethacin, NW-nitro-L-arginine, and luminal acid. Gastroenterology 1995;109;1526–34.

    Article  PubMed  CAS  Google Scholar 

  18. McQueen S, Hutton D, Allen A, Garner A. Gastric and duodenal surface mucus gel thickness in rat: effects of prostaglandins and damaging agents. Am J Physiol 1992;245:G388–93.

    Google Scholar 

  19. Sellers LA, Carroll NJH, Allen A. Misoprostol-induced increases in adherent gastric mucus thickness and luminal mucus output. Dig Dis Sei 1986;31:91S–5S.

    Article  CAS  Google Scholar 

  20. Akiba Y, Guth PH, Engel E, Nastaskin I, Kaunitz JD. Dynamic regulation of mucus gel thickness in rat duodenum. Am J Physiol 2000;279:G437–47.

    CAS  Google Scholar 

  21. Akiba Y, Furukawa O, Guth PH, Engel E, Nastaskin I, Kaunitz JD. Sensory pathways and cyclooxygenase regulate mucus gel thickness in rat duodenum. Am J Physiol 2001;280:G470–4.

    CAS  Google Scholar 

  22. Akiba Y, Nakamura M, Ishii H. Immunolocalization of vanilloid receptor-1 (VR-1) in CGRP-positive neurons and interstitial cells of Cajal in the myenteric plexus of the rat gastrointestinal tract [abstract]. Gastroenterology 2001;120:1721.

    Google Scholar 

  23. Bartho L, Koczan G, Maggi CA. Studies on the mechanism of the contractile action of rat calcitonin gene-related peptide and of capsaicin on the guinea-pig ileum: effect of hCGRP8–37 and CGRP tachyphylaxis. Neuropeptides 1993;25:325–9.

    Article  PubMed  CAS  Google Scholar 

  24. Takaki M, Jin JG, Nakayama S. Effects of capsaicin on the circular muscle motility of the isolated guinea-pig ileum. Acta Med Okayama 1989;43:353–7.

    PubMed  CAS  Google Scholar 

  25. Bartho L, Lembeck F, Holzer P. Calcitonin gene-related peptide is a potent relaxant of intestinal muscle. Eur J Pharmacol 1987;135:449–51.

    Article  PubMed  CAS  Google Scholar 

  26. Rekik M, Delvaux M, Frexinos J, Bueno L. The calcitonin gene-related peptide activates both cAMP and NO pathways to induce relaxation of circular smooth muscle cells of guinea-pig ileum. Peptides 1997;18:1517–22.

    Article  PubMed  CAS  Google Scholar 

  27. Hayes P, Meadows HJ, Gunthorpe MJ, et al. Cloning and functional expression of a human orthologue of rat vanilloid receptor-1. Pain 2000;88:205–15.

    Article  PubMed  CAS  Google Scholar 

  28. Akiba Y, Furukawa O, Guth PH, Engel E, Nastaskin I, Kaunitz JD. Acute adaptive cellular base uptake in rat duodenal epithelium. Am J Physiol 2001;280:G1083–92.

    CAS  Google Scholar 

  29. Safieh-Garabedian B, Poole S, Allchorne A, Winter J, Woolf CJ. Contribution of interleukin-1 beta to the inflammation-induced increase in nerve growth factor levels and inflammatory hyperalgesia. Br J Pharmacol 1995;115:1265–75.

    Article  PubMed  CAS  Google Scholar 

  30. Genz AK, v Engelhardt W, Busche R. Maintenance and regulation of the pH microclimate at the luminal surface of the distal colon of guinea-pig. J Physiol 1999;517:507–19.

    Article  PubMed  CAS  Google Scholar 

  31. Raybould HE. Does your gut taste? Sensory transduction in the gastrointestinal tract. News Physiol Sei 1998;13:275–80.

    CAS  Google Scholar 

  32. Aziz Q. Acid sensors in the gut: a taste of things to come. Eur J Gastroenterol Hepatol 2001;13:885–8.

    Article  PubMed  CAS  Google Scholar 

  33. Takeuchi K, Matsumoto J, Ueshima K, Okabe S. Role of capsaicin-sensitive afferent neurons in alkaline secretory response to luminal acid in the rat duodenum. Gastroenterology 1991;101:954–61.

    PubMed  CAS  Google Scholar 

  34. Yiangou Y, Facer P, Dyer NH, et al. Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet 2001;357:1338–9.

    Article  PubMed  CAS  Google Scholar 

  35. Holzer P. Gastrointestinal afferents as targets of novel drugs for the treatment of functional bowel disorders and visceral pain. Eur J Pharmacol 2001;429:177–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akiba, Y., Nakamura, M., Nagata, H. et al. Acid-sensing pathways in rat gastrointestinal mucosa. J Gastroenterol 37 (Suppl 14), 133–138 (2002). https://doi.org/10.1007/BF03326432

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326432

Keywords

Navigation