Skip to main content

Luminal Chemoreceptors and Intrinsic Nerves: Key Modulators of Digestive Motor Function

  • Conference paper
  • First Online:
The Enteric Nervous System II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1383))

  • 1074 Accesses

Abstract

This chapter reviews data on the pathways by which luminal, mainly duodenal, chemoreceptors modulate gastro-pyloro-duodenal motor function to control emptying of nutrients into the small intestine. The vagus mediates proximal gastric relaxation caused by nutrient stimulation of duodenal/jejunal mucosal chemoreceptors. Modulation of the spatial patterning and inhibition of antral contractions during duodenal chemoreceptor activation are somewhat conflicting: both vagal control and ascending intramural nerves appear to play a role. Intraduodenal nutrients stimulate the localized pyloric contractions that prevent transpyloric flow via ascending duodenal intramural nerve pathways. Though not yet formally investigated, patterns of activation of the duodenal brake motor mechanism suggest that duodenal loop mucosal chemoreceptors signal to a brake mechanism at the most aborad region of the duodenum via descending intramural duodenal nerves.

Intrinsic intramural pathways are important in the control of the first stages of digestion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iwasaki M, Akiba Y, Kaunitz JD (2018) Duodenal chemosensing. Curr Opin Gastroenterol 34:422–427

    Article  Google Scholar 

  2. Bellono NW, Bayrer JR, Leitch DB et al (2017) Enterochromaffin cells are gut Chemosensors that couple to sensory neural pathways. Cell 170(185–198):e16

    Google Scholar 

  3. Iggo A (1957) Gastric mucosal chemoreceptors with vagal afferent fibres in the cat. Q J Exp Physiol Cogn Med Sci 42:398–409

    CAS  Google Scholar 

  4. Goyal RK, Guo Y, Mashimo H (2019) Advances in the physiology of gastric emptying. Neurogastroenterol Motil 31:e13546

    Article  Google Scholar 

  5. Shahidullah M, Kennedy TL, Parks TG (1975) The vagus, the duodenal brake, and gastric emptying. Gut 16:331–336

    Article  CAS  Google Scholar 

  6. Azpiroz F, Malagelada JR (1986) Vagally mediated gastric relaxation induced by intestinal nutrients in the dog. Am J Phys 251:G727–G735

    CAS  Google Scholar 

  7. Fone DR, Akkermans LM, Dent J et al (1990) Evaluation of patterns of human antral and pyloric motility with an antral wall motion detector. Am J Phys 258:G616–G623

    CAS  Google Scholar 

  8. Anvari M, Dent J, Malbert C et al (1995) Mechanics of pulsatile transpyloric flow in the pig. J Physiol 488(Pt 1):193–202

    Article  CAS  Google Scholar 

  9. Tougas G, Anvari M, Dent J et al (1992) Relation of pyloric motility to pyloric opening and closure in healthy subjects. Gut 33:466–471

    Article  CAS  Google Scholar 

  10. Heddle R, Dent J, Toouli J et al (1988) Topography and measurement of pyloric pressure waves and tone in humans. Am J Phys 255:G490–G497

    CAS  Google Scholar 

  11. Houghton LA, Read NW, Heddle R et al (1988) Motor activity of the gastric antrum, pylorus, and duodenum under fasted conditions and after a liquid meal. Gastroenterology 94:1276–1284

    Article  CAS  Google Scholar 

  12. Houghton LA, Read NW, Heddle R et al (1988) Relationship of the motor activity of the antrum, pylorus, and duodenum to gastric emptying of a solid-liquid mixed meal. Gastroenterology 94:1285–1291

    Article  CAS  Google Scholar 

  13. Heddle R, Collins PJ, Dent J et al (1989) Motor mechanisms associated with slowing of the gastric emptying of a solid meal by an intraduodenal lipid infusion. J Gastroenterol Hepatol 4:437–447

    Article  CAS  Google Scholar 

  14. Heddle R, Dent J, Read NW et al (1988) Antropyloroduodenal motor responses to intraduodenal lipid infusion in healthy volunteers. Am J Phys 254:G671–G679

    CAS  Google Scholar 

  15. Fraser R, Fone D, Heddle R et al (1992) Stimulation of pyloric contractions by intraduodenal triglyceride is persistent and sensitive to atropine. J Gastroenterol Hepatol 7:563–568

    Article  CAS  Google Scholar 

  16. Heddle R, Fone D, Dent J et al (1988) Stimulation of pyloric motility by intraduodenal dextrose in normal subjects. Gut 29:1349–1357

    Article  CAS  Google Scholar 

  17. Fone DR, Horowitz M, Dent J et al (1989) Pyloric motor response to intraduodenal dextrose involves muscarinic mechanisms. Gastroenterology 97:83–90

    Article  CAS  Google Scholar 

  18. Treacy PJ, Jamieson GG, Dent J (1994) Pyloric motility and liquid gastric emptying during barostatic control of gastric pressure in pigs. J Physiol 474:361–366

    Article  CAS  Google Scholar 

  19. Treacy PJ, Jamieson GG, Dent J (1996) The effect of duodenal distention upon antro-pyloric motility and liquid gastric emptying in pigs. ANZ J Surg 66:37–40

    Article  CAS  Google Scholar 

  20. Anvari M, Yu P, Dent J et al (1995) Role of antral intramural neural pathways in control of gastric emptying in the pig. J Physiol 488(Pt 1):203–209

    Article  CAS  Google Scholar 

  21. Allescher HD, Daniel EE, Dent J et al (1988) Extrinsic and intrinsic neural control of pyloric sphincter pressure in the dog. J Physiol 401:17–38

    Article  CAS  Google Scholar 

  22. Allescher HD, Daniel EE, Dent J et al (1989) Neural reflex of the canine pylorus to intraduodenal acid infusion. Gastroenterology 96:18–28

    Article  CAS  Google Scholar 

  23. Rao SS, Lu C, Schulze-Delrieu K (1996) Duodenum as a immediate brake to gastric outflow: a videofluoroscopic and manometric assessment. Gastroenterology 110:740–747

    Article  CAS  Google Scholar 

  24. Dinning PG, Wiklendt L, Maslen L et al (2014) Quantification of in vivo colonic motor patterns in healthy humans before and after a meal revealed by high-resolution fiber-optic manometry. Neurogastroenterol Motil 26:1443–1457

    Article  CAS  Google Scholar 

  25. Dent J, Deloose E, Dinning P et al (2020) Manometric demonstration of duodenal/jejunal motor function consistent with the duodenal brake mechanism. Neurogastroenterol Motil 32:e13835

    Article  Google Scholar 

  26. Dent J, Chir B (1976) A new technique for continuous sphincter pressure measurement. Gastroenterology 71:263–267

    Article  CAS  Google Scholar 

  27. Schemann M, Ehrlein H (1986) Mechanical characteristics of phase II and phase III of the interdigestive migrating complex in dogs. Gastroenterology 91:117–123

    Article  CAS  Google Scholar 

  28. Cherrington AD, Rajagopalan H, Maggs D et al (2017) Hydrothermal duodenal mucosal resurfacing: role in the treatment of metabolic disease. Gastrointest Endosc Clin N Am 27:299–311

    Article  Google Scholar 

  29. van Baar ACG, Holleman F, Crenier L et al (2020) Endoscopic duodenal mucosal resurfacing for the treatment of type 2 diabetes mellitus: one year results from the first international, open-label, prospective, multicentre study. Gut 69:295–303

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phil G. Dinning .

Editor information

Editors and Affiliations

Additional information

Dedication

JD dedicates this chapter to Edwin (“Ed”) E Daniel, the most scientifically omnivorous and inquisitive person he has ever had the good fortune to work with.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dent, J., Dinning, P.G. (2022). Luminal Chemoreceptors and Intrinsic Nerves: Key Modulators of Digestive Motor Function. In: Spencer, N.J., Costa, M., Brierley, S.M. (eds) The Enteric Nervous System II. Advances in Experimental Medicine and Biology, vol 1383. Springer, Cham. https://doi.org/10.1007/978-3-031-05843-1_3

Download citation

Publish with us

Policies and ethics