Skip to main content
Log in

Effect of co-existing plant specie on soil microbial activity under heavy metal stress

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

The influence of plant primary compounds on the activity of soil microbial communities under heavy metal stress was studied in a pot-culture field experiment conducted in a green house. Amaranthus spinosus was cultivated in an agricultural soil previously amended in the laboratory with solutions of different trace elements in two separate treatment modes: singly and in combination. Culture-independent metabolism based indices such as the rate of carbon and nitrogen mineralization, microbial biomass carbon and soil basal respiration were monitored fortnightly over a period of six weeks. Result shows that plant detritus have significant modifying effect on soil microbe-metal interactions. Data on microbial and biochemical processes in the respective mesocosms did not vary from control; not even in mesocosms containing very high concentrations of copper, zinc and nickel. The soil microbial biomass carbon and the rate of carbon and nitrogen cycling were not impeded by the respective metal treatment while the respiration responses increased as a result of increase in metabolic activity of the soil microbes. The plant based substrates enabled the soil microflora to resist high metal contamination because of its tendency to absorb large amounts of inorganic cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Ghani, N. T.; Elchaghaby, G. A., (2007). Influence of operating conditions on the removal of Cu, Zn, Cd and Pb ions from wastewater by adsorption. Int. J. Environ. Sci. Tech., 4(4), 451–456 (6 pages).

    Article  CAS  Google Scholar 

  • Abdel-Ghani, N. T.; Hegazy, A. K.; El-Chaghaby, G. A., (2009). Typha domingensis leaf powder for decontamination of aluminium, iron, zinc and lead: Biosorption kinetics and equilibrium modeling. Int. J. Environ. Sci. Tech., 6(2), 243–248 (6 pages).

    CAS  Google Scholar 

  • Babel, S.; Opiso, E. M., (2007). Removal of Cr from synthetic wastewater by sorption into volcanic ash soil. Int. J. Environ. Sci. Tech., 4(1), 99–107 (9 pages).

    Article  CAS  Google Scholar 

  • Bremner, J. M., (1965). Inorganic forms of nitrogen. In: Black, C. A., Evans, D. D. White, J. L., Ensminger, L. E., Clark, F. E. (Eds.). Methods of soil analysis. Part 2. Chemical and microbiological properties. Agronomy Monograph No. 9 ASA, Madison, America. 1179–1237.

    Google Scholar 

  • Carney, K.; Matson, P. A., (2005). Plant communities, soil microorganisms and soil carbon cycling. Does altering the world below ground matter to ecosystem functioning? Ecosystems, 8(8), 928–940 (13 pages).

    Article  CAS  Google Scholar 

  • Carney, K., Matson, P. A., Bohannan, B. J. M., (2004). Diversity and composition of tropical soil nitrifiers across a plant diversity gradient and among land - use types. Ecol. Lett., 7, 684–694 (11 pages).

    Article  Google Scholar 

  • Chander, K.; Brookes, P. C., (1991). Is the dehydrogenase assay invalid as a method to estimate microbial activity in copper - contaminated soils? Soil Biol. Biochem., 23(10), 909–915 (7 pages).

    Article  CAS  Google Scholar 

  • Cherian, E.; Jayachandran, K., (2009). Microbial degradation of natural rubber latex by a novel species of Bacillus sp. SBS25 isolated from soil. Int. J. Environ. Res., 3(4), 599–604 (6 pages).

    CAS  Google Scholar 

  • Dai, J.; Becquer, T.; Rouiller, J. H.; Reversat, G.; Berhard-Reversat, F.; Lavelle, P., (2004). nfluence of heavy metals on C and N mineralisation and microbial biomass in Zn-, Pb-, Cu-, and Cd-contaminated soils. Appl. Soil Ecol., 25(2), 99–109 (10 pages).

    Article  Google Scholar 

  • Giller, K.; Witter, E. E.; McGrath, S. P., (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biol. Biochem., 30(10–11), 1389–1414 (26 pages).

    Article  CAS  Google Scholar 

  • Gueu, S.; Yao, B.; Adouby, K.; Ado, G. (2007). Kinetics and thermodynamics study of lead adsorption on to activated carbons from coconut and seed hull of the palm tree. Int. J. Environ. Sci. Tech. 4(1), 11–17 (6 pages).

    Article  CAS  Google Scholar 

  • Hattori, H, (1992). Influence of heavy metals on soil microbical activities. Soil. Sci. Plant Nutr., 38(1), 93–100 (8 pages).

    Article  CAS  Google Scholar 

  • He, Z. L.; Yang, X. E.; Baligar, V. C.; Calvert, D. V., (2003). Microbiological and biochemical indexing systems for assessing acid soil quality. Adv. Agron., 78, 89–138 (50 pages).

    Article  CAS  Google Scholar 

  • He, Z. L.; Yang, X. E.; Stoffella, P. J., (2005). Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol., 19 9(2–3), 125–140 (16 pages).

    Article  Google Scholar 

  • Hooper D. U.; Bignell, D. E.; Brown, V. K.; Brussaard, L.; Dangerfield, J. M.; Wall, D. H.; Wardle, D. A.; Coleman, D.C.; Giller K. E.; Lavelle, P.; Van der Putten, W. H.; De Ruiter, P. P. C.; Ruse, K. J.; Silver, W. L.; Tiedje, J. M.; Wolters, V., (2000). Interactions between aboveground and below ground biodiversity in terrestrial ecosystems: Patterns, mechanisms and feedbacks. Biosci. 50(12), 1049–1061 (12 pages).

    Article  Google Scholar 

  • Igbinosa, E. O.; Okoh, A. I., (2009). Impact of discharge wastewater effluents on the physico-chemical qualities of a receiving watershed in a typical rural community. Int. J. Environ. Sci. Tech., 6(2), 175–182 (8 pages).

    CAS  Google Scholar 

  • Illmer, P.; Schinner, F., (1991). Effects of lime and nutrient salts on the microbiological activities of forest soils. Bio. Fertil. Soils., 11(4), 261–266 (6 pages).

    Article  Google Scholar 

  • Kalembasa, S. J.; Jenkinson, D. S., (1973). A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. J. Sci. Food Agri., 24(9), 1085–1090 (6 pages).

    Article  CAS  Google Scholar 

  • Kowalchuk, G. A.; Buma, D. S.; Boer, W. D.; Klinkhamer, P. G. L.; Van Veen, J. A., (2002). Effects of above ground plant specie composition and diversity on the diversity of soil - borne microorganisms. Ant. Van Leewenhoek, 81(1–4), 509–520 (12 pages).

    Article  Google Scholar 

  • Leita, L.; De-Nobili, M.; Muhlbachova, G.; Mondini, C.; Marchiol, L.; Zerbi, G., (1995). Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory incubation. Biol. Fert. Soils, 19(2–3), 103–118 (16 pages).

    Article  CAS  Google Scholar 

  • Li, Y.; Rouland, T. C.; Benedetti, M.; Li, F.; Pando, A.; Laveller, P.; Dai, J., (2009). Microbial biomass, enzyme and mineralization activity in relation to soil organic C, N and P turnover influenced by acid metal stress. Soil Biol. Biochem., 41(5), 969–977 (9 pages).

    Article  CAS  Google Scholar 

  • Malakootian, M.; Nouri, J.; Hossaini, H., (2009). Removal of heavy metals from paint industries wastewater using Leca as an available adsorbent. Int. J. Environ. Sci. Tech., 6(2), 183–190 (8 pages).

    CAS  Google Scholar 

  • Marschner, B.; Kalbitz, K., (2003). Control of bioavailability and biodegradation of dissolved matter in soils. Geoderma 113(3–4), 211–235 (25 pages).

    Article  CAS  Google Scholar 

  • Marschner, P.; Yang, C. H.; Lieberei, R.; Crowley, D. E., (2001). Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol. Biochem., 33(11), 1437–1445 (9 pages).

    Article  CAS  Google Scholar 

  • Moreno, J. L. F.; Bastida, M.; Ross, M.; Hernandez, T.; Garcia, C., (2009). Soil organic carbon buffers heavy metal contamination on semiarid soils: Effects of different threshold levels on soil microbial activity. Eur. J. Soil Biol., 45(3), 220–228 (9 pages).

    Article  CAS  Google Scholar 

  • Nannipieri, P. E.; Kandeler, E.; Ruggiero, P., (2002). Enzyme activities and microbiological and biochemical processes in soil. In: Burns, R. G.; Dick, R. P. (Eds.). Enzymes in the Environment. Marcel Dekker, New York.1–34.

    Google Scholar 

  • Niklinska, M.; Laskowski, R.; Maryanski, M., (1998). Effects of heavy metal and storage time on two types of forest litter: basal respiration rate and exchangeable metals. Ecotox. Environ. Saf., 41(1), 8–18 (11 pages).

    Article  CAS  Google Scholar 

  • Nwuche, C. O.; Ugoji, E. O., (2008). Effects of heavy metal pollution on the soil microbial activity. Int. J. Environ. Sci. Tech., 5: 409–414 (6 pages).

    Article  CAS  Google Scholar 

  • Okafor, E. Ch.; Opuene, K., (2007). Preliminary assessment of trace metals and polycyclic aromatic hydrocarbons in the sediments. Int. J. Environ. Sci. Tech., 4(2), 233–240 (8 pages).

    CAS  Google Scholar 

  • Oshode, O. A.; Bakare, A. A.; Adeogun, A. O.; Efuntoye M. O.; Sowunmi, A. A., (2008). Ecotoxicological assessment using Clarias gariepinus and microbial characterization of leachate from municipal solid waste landfill. Int. J. Environ. Res., 2(4), 391–400 (10 pages).

    Google Scholar 

  • Panjeshahi, M. H.; Ataei, A., (2008). Application of an environmentally optimum cooling water system design in water and energy conservation. Int. J. Environ. Sci. Tech., 5(2), 251–262 (12 pages).

    Article  Google Scholar 

  • Perez-de-Mora, A.; Madrid, F.; Cabrera, F.; Madejon, E., (2007). Amendments and plant cover influence on trace element pools in a contaminated soil. Geoderma 139(1-2), 1–10 (10 pages).

    Article  CAS  Google Scholar 

  • Petersen, S. O.; Klug, M. J., (1994). Effects of sieving, storage and incubation temperature on the phospholipid fatty-acid profile of soil microbial community. Appld. Env. Microbiol., 60: 2421–2430 (10 pages).

    CAS  Google Scholar 

  • Rorga, P.; Nilsson, M.; Tunlid, A., (1994). Bacterial communities in peat in relation to botanical composition as revealed by phospholipid fatty acid analysis. Soil Biol. Biochem., 26: 841–848 (8 pages).

    Article  Google Scholar 

  • Schloter, M.; Dilly, O.; Munch, J. C., (2003). Indicators for evaluating soil quality. Agric. Ecosyst. Environ., 98(1–3), 255–262 (8 pages).

    Article  Google Scholar 

  • Smith, J. L.; Paul, E. A., (1990). The significance of soil microbial biomass estimations. In: J. Bollag; G. Stotsky (Eds.) Soil biochemistry. Marcel Dekker, New York, New York, US

    Google Scholar 

  • Stephan, A.; Meyer, A.; Schmid, B., (2000). Plant diversity affects cultivable soil bacteria in experimental grassland communities. J. Ecol., 88(6), 988–998 (11 pages).

    Article  Google Scholar 

  • Suthar, S.; Singh, S., (2008). Vermicomposting of domestic waste by using two epigeic earthworms (Perionyx excavatus and Perionyx sansibaricus). Int. J. Environ. Sci. Tech., 5(1), 99–106 (8 pages).

    Article  CAS  Google Scholar 

  • Torkian, A.; Keshavarzi Shirazi, H.; Mehrdadi, N., (2007). Fate of intermediate biodegradation products of triethyl amine in a compost-based biofiltration system. Int. J. Environ. Res., 1(2), 163–169.

    CAS  Google Scholar 

  • Vance, E. D.; Brookes, P. C.; Jenkinson, D. S., (1987). An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem., 19(16), 703–707 (5 pages).

    Article  CAS  Google Scholar 

  • Vig, K.; Megharaj, M.; Sethunathan, N.; Naidu, R., (2003). Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review. Adv. Environ. Res., 8(1), 121–135 (15 pages).

    Article  CAS  Google Scholar 

  • Yang, R. J.; Tang, J.; Chen, X.; Hu, S., (2007). Effects of co existing plant species on soil microbes and soil enzymes in metal lead contaminated soils. Appl. Soil Eco., 37(3), 240–246 (7 pages).

    Article  Google Scholar 

  • Zak, D. R.; Holmes, W. E.; White, D. C.; Peacock, A. D.; Tilman, D., (2003). Plant diversity: Soil microbial communities and ecosystem function, Are there any links? Ecology 84(4), 2042–2050 (9 pages).

    Article  Google Scholar 

  • Zvinowanda, C. M.; Okonkwo, J. O.; Shabalala, P. N.; Agyei, N.M., (2009). A novel adsorbent for heavy metal remediation in aqueous environments. Int. J. Environ. Sci. Tech. 6(3), 425–434 (10 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. O. Nwuche M.Sc..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nwuche, C.O., Ugoji, E.O. Effect of co-existing plant specie on soil microbial activity under heavy metal stress. Int. J. Environ. Sci. Technol. 7, 697–704 (2010). https://doi.org/10.1007/BF03326179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326179

Keywords

Navigation