Skip to main content

Effect of co-existing plant specie on soil microbial activity under heavy metal stress

Abstract

The influence of plant primary compounds on the activity of soil microbial communities under heavy metal stress was studied in a pot-culture field experiment conducted in a green house. Amaranthus spinosus was cultivated in an agricultural soil previously amended in the laboratory with solutions of different trace elements in two separate treatment modes: singly and in combination. Culture-independent metabolism based indices such as the rate of carbon and nitrogen mineralization, microbial biomass carbon and soil basal respiration were monitored fortnightly over a period of six weeks. Result shows that plant detritus have significant modifying effect on soil microbe-metal interactions. Data on microbial and biochemical processes in the respective mesocosms did not vary from control; not even in mesocosms containing very high concentrations of copper, zinc and nickel. The soil microbial biomass carbon and the rate of carbon and nitrogen cycling were not impeded by the respective metal treatment while the respiration responses increased as a result of increase in metabolic activity of the soil microbes. The plant based substrates enabled the soil microflora to resist high metal contamination because of its tendency to absorb large amounts of inorganic cations.

This is a preview of subscription content, access via your institution.

References

  1. Abdel-Ghani, N. T.; Elchaghaby, G. A., (2007). Influence of operating conditions on the removal of Cu, Zn, Cd and Pb ions from wastewater by adsorption. Int. J. Environ. Sci. Tech., 4(4), 451–456 (6 pages).

    Article  CAS  Google Scholar 

  2. Abdel-Ghani, N. T.; Hegazy, A. K.; El-Chaghaby, G. A., (2009). Typha domingensis leaf powder for decontamination of aluminium, iron, zinc and lead: Biosorption kinetics and equilibrium modeling. Int. J. Environ. Sci. Tech., 6(2), 243–248 (6 pages).

    CAS  Google Scholar 

  3. Babel, S.; Opiso, E. M., (2007). Removal of Cr from synthetic wastewater by sorption into volcanic ash soil. Int. J. Environ. Sci. Tech., 4(1), 99–107 (9 pages).

    Article  CAS  Google Scholar 

  4. Bremner, J. M., (1965). Inorganic forms of nitrogen. In: Black, C. A., Evans, D. D. White, J. L., Ensminger, L. E., Clark, F. E. (Eds.). Methods of soil analysis. Part 2. Chemical and microbiological properties. Agronomy Monograph No. 9 ASA, Madison, America. 1179–1237.

    Google Scholar 

  5. Carney, K.; Matson, P. A., (2005). Plant communities, soil microorganisms and soil carbon cycling. Does altering the world below ground matter to ecosystem functioning? Ecosystems, 8(8), 928–940 (13 pages).

    Article  CAS  Google Scholar 

  6. Carney, K., Matson, P. A., Bohannan, B. J. M., (2004). Diversity and composition of tropical soil nitrifiers across a plant diversity gradient and among land - use types. Ecol. Lett., 7, 684–694 (11 pages).

    Article  Google Scholar 

  7. Chander, K.; Brookes, P. C., (1991). Is the dehydrogenase assay invalid as a method to estimate microbial activity in copper - contaminated soils? Soil Biol. Biochem., 23(10), 909–915 (7 pages).

    Article  CAS  Google Scholar 

  8. Cherian, E.; Jayachandran, K., (2009). Microbial degradation of natural rubber latex by a novel species of Bacillus sp. SBS25 isolated from soil. Int. J. Environ. Res., 3(4), 599–604 (6 pages).

    CAS  Google Scholar 

  9. Dai, J.; Becquer, T.; Rouiller, J. H.; Reversat, G.; Berhard-Reversat, F.; Lavelle, P., (2004). nfluence of heavy metals on C and N mineralisation and microbial biomass in Zn-, Pb-, Cu-, and Cd-contaminated soils. Appl. Soil Ecol., 25(2), 99–109 (10 pages).

    Article  Google Scholar 

  10. Giller, K.; Witter, E. E.; McGrath, S. P., (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biol. Biochem., 30(10–11), 1389–1414 (26 pages).

    Article  CAS  Google Scholar 

  11. Gueu, S.; Yao, B.; Adouby, K.; Ado, G. (2007). Kinetics and thermodynamics study of lead adsorption on to activated carbons from coconut and seed hull of the palm tree. Int. J. Environ. Sci. Tech. 4(1), 11–17 (6 pages).

    Article  CAS  Google Scholar 

  12. Hattori, H, (1992). Influence of heavy metals on soil microbical activities. Soil. Sci. Plant Nutr., 38(1), 93–100 (8 pages).

    Article  CAS  Google Scholar 

  13. He, Z. L.; Yang, X. E.; Baligar, V. C.; Calvert, D. V., (2003). Microbiological and biochemical indexing systems for assessing acid soil quality. Adv. Agron., 78, 89–138 (50 pages).

    Article  CAS  Google Scholar 

  14. He, Z. L.; Yang, X. E.; Stoffella, P. J., (2005). Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol., 19 9(2–3), 125–140 (16 pages).

    Article  Google Scholar 

  15. Hooper D. U.; Bignell, D. E.; Brown, V. K.; Brussaard, L.; Dangerfield, J. M.; Wall, D. H.; Wardle, D. A.; Coleman, D.C.; Giller K. E.; Lavelle, P.; Van der Putten, W. H.; De Ruiter, P. P. C.; Ruse, K. J.; Silver, W. L.; Tiedje, J. M.; Wolters, V., (2000). Interactions between aboveground and below ground biodiversity in terrestrial ecosystems: Patterns, mechanisms and feedbacks. Biosci. 50(12), 1049–1061 (12 pages).

    Article  Google Scholar 

  16. Igbinosa, E. O.; Okoh, A. I., (2009). Impact of discharge wastewater effluents on the physico-chemical qualities of a receiving watershed in a typical rural community. Int. J. Environ. Sci. Tech., 6(2), 175–182 (8 pages).

    CAS  Google Scholar 

  17. Illmer, P.; Schinner, F., (1991). Effects of lime and nutrient salts on the microbiological activities of forest soils. Bio. Fertil. Soils., 11(4), 261–266 (6 pages).

    Article  Google Scholar 

  18. Kalembasa, S. J.; Jenkinson, D. S., (1973). A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. J. Sci. Food Agri., 24(9), 1085–1090 (6 pages).

    Article  CAS  Google Scholar 

  19. Kowalchuk, G. A.; Buma, D. S.; Boer, W. D.; Klinkhamer, P. G. L.; Van Veen, J. A., (2002). Effects of above ground plant specie composition and diversity on the diversity of soil - borne microorganisms. Ant. Van Leewenhoek, 81(1–4), 509–520 (12 pages).

    Article  Google Scholar 

  20. Leita, L.; De-Nobili, M.; Muhlbachova, G.; Mondini, C.; Marchiol, L.; Zerbi, G., (1995). Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory incubation. Biol. Fert. Soils, 19(2–3), 103–118 (16 pages).

    Article  CAS  Google Scholar 

  21. Li, Y.; Rouland, T. C.; Benedetti, M.; Li, F.; Pando, A.; Laveller, P.; Dai, J., (2009). Microbial biomass, enzyme and mineralization activity in relation to soil organic C, N and P turnover influenced by acid metal stress. Soil Biol. Biochem., 41(5), 969–977 (9 pages).

    Article  CAS  Google Scholar 

  22. Malakootian, M.; Nouri, J.; Hossaini, H., (2009). Removal of heavy metals from paint industries wastewater using Leca as an available adsorbent. Int. J. Environ. Sci. Tech., 6(2), 183–190 (8 pages).

    CAS  Google Scholar 

  23. Marschner, B.; Kalbitz, K., (2003). Control of bioavailability and biodegradation of dissolved matter in soils. Geoderma 113(3–4), 211–235 (25 pages).

    Article  CAS  Google Scholar 

  24. Marschner, P.; Yang, C. H.; Lieberei, R.; Crowley, D. E., (2001). Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol. Biochem., 33(11), 1437–1445 (9 pages).

    Article  CAS  Google Scholar 

  25. Moreno, J. L. F.; Bastida, M.; Ross, M.; Hernandez, T.; Garcia, C., (2009). Soil organic carbon buffers heavy metal contamination on semiarid soils: Effects of different threshold levels on soil microbial activity. Eur. J. Soil Biol., 45(3), 220–228 (9 pages).

    Article  CAS  Google Scholar 

  26. Nannipieri, P. E.; Kandeler, E.; Ruggiero, P., (2002). Enzyme activities and microbiological and biochemical processes in soil. In: Burns, R. G.; Dick, R. P. (Eds.). Enzymes in the Environment. Marcel Dekker, New York.1–34.

    Google Scholar 

  27. Niklinska, M.; Laskowski, R.; Maryanski, M., (1998). Effects of heavy metal and storage time on two types of forest litter: basal respiration rate and exchangeable metals. Ecotox. Environ. Saf., 41(1), 8–18 (11 pages).

    Article  CAS  Google Scholar 

  28. Nwuche, C. O.; Ugoji, E. O., (2008). Effects of heavy metal pollution on the soil microbial activity. Int. J. Environ. Sci. Tech., 5: 409–414 (6 pages).

    Article  CAS  Google Scholar 

  29. Okafor, E. Ch.; Opuene, K., (2007). Preliminary assessment of trace metals and polycyclic aromatic hydrocarbons in the sediments. Int. J. Environ. Sci. Tech., 4(2), 233–240 (8 pages).

    CAS  Google Scholar 

  30. Oshode, O. A.; Bakare, A. A.; Adeogun, A. O.; Efuntoye M. O.; Sowunmi, A. A., (2008). Ecotoxicological assessment using Clarias gariepinus and microbial characterization of leachate from municipal solid waste landfill. Int. J. Environ. Res., 2(4), 391–400 (10 pages).

    Google Scholar 

  31. Panjeshahi, M. H.; Ataei, A., (2008). Application of an environmentally optimum cooling water system design in water and energy conservation. Int. J. Environ. Sci. Tech., 5(2), 251–262 (12 pages).

    Article  Google Scholar 

  32. Perez-de-Mora, A.; Madrid, F.; Cabrera, F.; Madejon, E., (2007). Amendments and plant cover influence on trace element pools in a contaminated soil. Geoderma 139(1-2), 1–10 (10 pages).

    Article  CAS  Google Scholar 

  33. Petersen, S. O.; Klug, M. J., (1994). Effects of sieving, storage and incubation temperature on the phospholipid fatty-acid profile of soil microbial community. Appld. Env. Microbiol., 60: 2421–2430 (10 pages).

    CAS  Google Scholar 

  34. Rorga, P.; Nilsson, M.; Tunlid, A., (1994). Bacterial communities in peat in relation to botanical composition as revealed by phospholipid fatty acid analysis. Soil Biol. Biochem., 26: 841–848 (8 pages).

    Article  Google Scholar 

  35. Schloter, M.; Dilly, O.; Munch, J. C., (2003). Indicators for evaluating soil quality. Agric. Ecosyst. Environ., 98(1–3), 255–262 (8 pages).

    Article  Google Scholar 

  36. Smith, J. L.; Paul, E. A., (1990). The significance of soil microbial biomass estimations. In: J. Bollag; G. Stotsky (Eds.) Soil biochemistry. Marcel Dekker, New York, New York, US

    Google Scholar 

  37. Stephan, A.; Meyer, A.; Schmid, B., (2000). Plant diversity affects cultivable soil bacteria in experimental grassland communities. J. Ecol., 88(6), 988–998 (11 pages).

    Article  Google Scholar 

  38. Suthar, S.; Singh, S., (2008). Vermicomposting of domestic waste by using two epigeic earthworms (Perionyx excavatus and Perionyx sansibaricus). Int. J. Environ. Sci. Tech., 5(1), 99–106 (8 pages).

    Article  CAS  Google Scholar 

  39. Torkian, A.; Keshavarzi Shirazi, H.; Mehrdadi, N., (2007). Fate of intermediate biodegradation products of triethyl amine in a compost-based biofiltration system. Int. J. Environ. Res., 1(2), 163–169.

    CAS  Google Scholar 

  40. Vance, E. D.; Brookes, P. C.; Jenkinson, D. S., (1987). An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem., 19(16), 703–707 (5 pages).

    Article  CAS  Google Scholar 

  41. Vig, K.; Megharaj, M.; Sethunathan, N.; Naidu, R., (2003). Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review. Adv. Environ. Res., 8(1), 121–135 (15 pages).

    Article  CAS  Google Scholar 

  42. Yang, R. J.; Tang, J.; Chen, X.; Hu, S., (2007). Effects of co existing plant species on soil microbes and soil enzymes in metal lead contaminated soils. Appl. Soil Eco., 37(3), 240–246 (7 pages).

    Article  Google Scholar 

  43. Zak, D. R.; Holmes, W. E.; White, D. C.; Peacock, A. D.; Tilman, D., (2003). Plant diversity: Soil microbial communities and ecosystem function, Are there any links? Ecology 84(4), 2042–2050 (9 pages).

    Article  Google Scholar 

  44. Zvinowanda, C. M.; Okonkwo, J. O.; Shabalala, P. N.; Agyei, N.M., (2009). A novel adsorbent for heavy metal remediation in aqueous environments. Int. J. Environ. Sci. Tech. 6(3), 425–434 (10 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. O. Nwuche M.Sc..

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nwuche, C.O., Ugoji, E.O. Effect of co-existing plant specie on soil microbial activity under heavy metal stress. Int. J. Environ. Sci. Technol. 7, 697–704 (2010). https://doi.org/10.1007/BF03326179

Download citation

Keywords

  • Basal respiration
  • Greenhouse
  • Mesocosms
  • Substrates
  • Microbial biomass carbon
  • Mineralization
  • Pot-culture