Skip to main content
Log in

Special Polynomials Associated with Rational Solutions of the Painlevé Equations and Applications to Soliton Equations

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

Rational solutions of the second, third and fourth Painlevé equations can be expressed in terms of special polynomials defined through second order bilinear differential-difference equations which are equivalent to the Toda equation. In this paper the structure of the roots of these special polynomials, as well as the special polynomials associated with algebraic solutions of the third and fifth Painlevé equations and equations in the PII hierarchy, are studied. It is shown that the roots of these polynomials have an intriguing, highly symmetric and regular structure in the complex plane. Further, using the Hamiltonian theory for the Painlevé equations, other properties of these special polynomials are studied. Soliton equations, which are solvable by the inverse scattering method, are known to have symmetry reductions which reduce them to Painlevé equations. Using this relationship, rational solutions of the Korteweg-de Vries and modified Korteweg-de Vries equations and rational and rational-oscillatory solutions of the non-linear Schrödinger equation are expressed in terms of these special polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, vol. 149, L.M.S. Lect. Notes Math., Cambridge University Press, Cambridge, 1991.

    Google Scholar 

  2. M. J. Ablowitz and J. Satsuma, Solitons and rational solutions of nonlinear evolution equations, J. Math. Phys. 19 (1978), 2180–2186.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. J. Ablowitz and H. Segur, Exact linearization of a Painlevé transcendent, Phys. Rev. Lett. 38 (1977), 1103–1106.

    Article  MathSciNet  Google Scholar 

  4. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.

    Book  MATH  Google Scholar 

  5. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.

    Google Scholar 

  6. M. Adler and J. Moser, On a class of polynomials associated with the Korteweg-de Vries equation, Commun. Math. Phys. 61 (1978), 1–30.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Adler and P. van Moerbeke, Recursion relations for unitary integrals, combinatorics and the Toeplitz lattice, Commun. Math. Phys. 237 (2003), 397–440.

    MATH  Google Scholar 

  8. V. E. Adler, Nonlinear chains and Painlevé equations, Physica D73 (1994), 335–351.

    Google Scholar 

  9. V. E. Adler, V. G. Marikhin and A. B. Shabat, Lagrangian chains and canonical Bäcklund transformations, Theo. Math. Phys. 129 (2001), 1448–1465.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Airault, Rational solutions of Painlevé equations, Stud. Appl. Math. 61 (1979), 31–53.

    MathSciNet  MATH  Google Scholar 

  11. H. Airault, H. P. McKean and J. Moser, Rational and elliptic solutions of the KdV equation and related many-body problems, Commun. Pure Appl. Math. 30 (1977), 95–148.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. W. Albrecht, E. L. Mansfield and A. E. Milne, Algorithms for special integrals of ordinary differential equations, J. Phys. A: Math. Gen. 29 (1996), 973–991.

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Amdeberhan, Discriminants of Umemura polynomials associated to Painlevé III, Phys. Lett. A 354 (2006), 410–413.

    Article  MATH  Google Scholar 

  14. G. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999.

    MATH  Google Scholar 

  15. J. Baik, Painlevé expressions for LOE, LSE and interpolating ensembles, Int. Math. Res. Notices 33 (2002), 1739–1789.

    Article  MathSciNet  Google Scholar 

  16. I. V. Barashenkov and D. E. Pelinovsky, Exact vortex solutions of the complex sine-Gordon theory on the plane, Phys. Lett. 436 (1998), 117–124.

    Article  MathSciNet  Google Scholar 

  17. A. P. Bassom, P. A. Clarkson and A. C. Hicks, Bäcklund transformations and solution hierarchies for the fourth Painlevé equation, Stud. Appl. Math. 95 (1995), 1–71.

    MathSciNet  MATH  Google Scholar 

  18. M. Boiti and F. Pempinelli, Nonlinear Schrödinger equation, Bäcklund transformations and Painlevé transcendents, Nuovo Cim. 59B (1980), 40–58.

    Article  MathSciNet  Google Scholar 

  19. A. Borodin, Discrete gap probabilities and discrete Painlevé equations, Duke Math. J. 117 (2003), 489–542.

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Bureau, Differential equations with fixed critical points, Annali di Matematica 66 (1964), 1–116; 229–364.

    Article  MathSciNet  MATH  Google Scholar 

  21. F. Bureau, Equations différentielles du second ordre en Y et du second degré en Ÿ dont l’intégrale générale est à points critiques fixes, Annali di Matematica 91 (1972), 163–281.

    Article  MathSciNet  MATH  Google Scholar 

  22. F. Bureau, Sur une systéme d’équations differentiels non linéaires, Bull. Acad. R. Belg. 66 (1980), 280–284.

    MathSciNet  MATH  Google Scholar 

  23. F. Bureau, Differential equations with fixed critical points, in: Painlevé Transcendents, their Asymptotics and Physical Applications, P. Winternitz and D. Levi (eds.), NATO ASI Series B: Physics, vol. 278, Plenum, New York, 103–123, 1992.

    Google Scholar 

  24. J. Chazy, Sur les équations différentielles du troisiéme ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes, Acta Math. 34 (1911), 317–385.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. V. Choodnovsky and G. V. Choodnovsky, Pole expansions of nonlinear partial differential equations, Nuovo Cim. 40B (1977), 339–353.

    Article  MathSciNet  Google Scholar 

  26. P. A. Clarkson, Painlevé equations — nonlinear special functions, J. Comp. Appl. Math. 153 (2003), 127–140.

    Article  MathSciNet  MATH  Google Scholar 

  27. P. A. Clarkson, The third Painlevé equation and associated special polynomials, J. Phys. A: Math. Gen. 36 (2003), 9507–9532.

    Article  MathSciNet  MATH  Google Scholar 

  28. P. A. Clarkson, The fourth Painlevé equation and associated special polynomials, J. Math. Phys. 44 (2003), 5350–5374.

    Article  MathSciNet  MATH  Google Scholar 

  29. P. A. Clarkson, Remarks on the Yablonskii-Vorob’ev polynomials, Phys. Lett. A319 (2003), 137–144.

    MathSciNet  Google Scholar 

  30. P. A. Clarkson, Special polynomials associated with rational solutions of the fifth Painlevé equation, J. Comp. Appl. Math. 178 (2005), 111–129.

    Article  MathSciNet  MATH  Google Scholar 

  31. P. A. Clarkson, On rational solutions of the fourth Painlevé equation and its Hamiltonian, in: Group Theory and Numerical Analysis, P. Winternitz, D. Gomez-Ullate, A. Iserles, D. Levi, P.J. Olver, R. Quispel and P. Tempesta (eds.), CRM Proc. Lect. Notes Series, 39, Amer. Math. Soc., Providence, RI, 103–118, 2005.

    Google Scholar 

  32. —, Special polynomials associated with rational solutions of the defocusing nonlinear Schrödinger equation and the fourth Painlevé equation, to appear in Europ. J. Appl. Math.

  33. P. A. Clarkson, Painlevé equations — nonlinear special functions, in: Orthogonal Polynomials and Special Functions: Computation and Application, F. Marcellán and W. van Assche (eds.), Lect. Notes Math., vol. 1883, Springer-Verlag, Berlin, 331–411, 2006.

    Google Scholar 

  34. P. A. Clarkson, N. Joshi and A. Pickering, Bäcklund transformations for the second Painlevé hierarchy: a modified truncation approach, Inverse Problems 15 (1999), 175–187.

    Article  MathSciNet  MATH  Google Scholar 

  35. P. A. Clarkson and E. L. Mansfield, The second Painlevé equation, its hierarchy and associated special polynomials, Nonlinearity 16 (2003), R1–R26.

    Article  MathSciNet  MATH  Google Scholar 

  36. P. A. Clarkson, E. L. Mansfield and H. N. Webster, On the relation between the continuous and discrete Painlevé equations, Theo. Math. Phys. 122 (2000), 1–16.

    Article  MathSciNet  Google Scholar 

  37. C. M. Cosgrove and G. Scoufis, Painlevé classification of a class of differential equations of the second order and second degree, Stud. Appl. Math. 88 (1993), 25–87.

    MathSciNet  MATH  Google Scholar 

  38. M. V. Demina and N. A. Kudryashov, Explicit form of the Yablonskii-Vorob’ev polynomials preprint arXiv:math/0603044 (2006).

  39. B. Deconinck and H. Segur, Pole dynamics for elliptic solutions of the Korteweg-de Vries equation, Math. Phys., Anal. Geom 3 (2000), 49–74.

    Article  MathSciNet  MATH  Google Scholar 

  40. N. P. Erugin, The analytic theory and problems of the real theory of differential equations connected with the [Lyapunov] first method and with the method of analytic theory, Diff. Eqns. 3 (1967), 943–966.

    Google Scholar 

  41. H. Flaschka and A. C. Newell, Monodromy- and spectrum preserving deformations. I, Commun. Math. Phys. 76 (1980), 65–116.

    Article  MathSciNet  MATH  Google Scholar 

  42. A. S. Fokas and M. J. Ablowitz, On a unified approach to transformations and elementary solutions of Painlevé equations, J. Math. Phys. 23 (1982), 2033–2042.

    Article  MathSciNet  MATH  Google Scholar 

  43. A. S. Fokas, B. Grammaticos and A. Ramani, From continuous to discrete Painlevé equations, J. Math. Anal. Appl. 180 (1993), 342–360.

    Article  MathSciNet  MATH  Google Scholar 

  44. A. S. Fokas, U. Mugan and M. J. Ablowitz, A method of linearisation for Painlevé equations: Painlevé IV, V, Physica D30 (1988), 247–283.

    MathSciNet  Google Scholar 

  45. P. J. Forrester and N. S. Witte, Application of the τ-function theory of Painlevé equations to Random Matrices: PIV, PII and the GUE, Commun. Math. Phys. 219 (2001), 357–398.

    Article  MathSciNet  MATH  Google Scholar 

  46. P. J. Forrester and N. S. Witte, Application of the τ-function theory of Painlevé equations to random matrices: PV, PIII, the LUE, JUE and CUE, Commun. Pure Appl. Math. 55 (2002), 679–727.

    Article  MathSciNet  MATH  Google Scholar 

  47. P. J. Forrester and N. S. Witte, Discrete Painlevé equations and random matrix averages, Nonlinearity 16 (2003), 1919–1944.

    Article  MathSciNet  MATH  Google Scholar 

  48. S. Fukutani, K. Okamoto and H. Umemura, Special polynomials and the Hirota bilinear relations of the second and fourth Painlevé equations, Nagoya Math. J. 159 (2000), 179–200.

    MathSciNet  MATH  Google Scholar 

  49. L. Gagnon, B. Grammaticos, A. Ramani and P. Winternitz, Lie symmetries of a generalized nonlinear Schrödinger equation: III. Reductions to third order ordinary differential equations, J. Phys. A: Math. Gen. 22 (1989), 499–509.

    MathSciNet  MATH  Google Scholar 

  50. V. M. Galkin, D. E. Pelinovsky and Yu. A. Stepanyants, The structure of the rational solutions to the Boussinesq equation, Physica D80 (1995), 246–255.

    MathSciNet  Google Scholar 

  51. H. Goto and K. Kajiwara, Generating function related to the Okamoto polynomials of the Painlevé IV equation, Bull. Aust. Math. Soc. 71 (2005), 517–526.

    Article  MathSciNet  MATH  Google Scholar 

  52. B. Grammaticos, A. Ramani and V. Papageorgiou, Do integrable mappings have the Painlev’e property?, Phys. Rev. Lett. 67 (1991), 1825–1828.

    Article  MathSciNet  MATH  Google Scholar 

  53. V. I. Gromak, The solutions of Painlevé’s third equation, Diff. Eqns. 9 (1973), 1599–1600.

    MathSciNet  Google Scholar 

  54. V. I. Gromak, On the theory of Painlevé’s equations, Diff. Eqns. 11 (1975), 285–287.

    MathSciNet  Google Scholar 

  55. V. I. Gromak, One-parameter systems of solutions of Painlevé’s equations, Diff. Eqns. 14 (1978), 1510–1513.

    MathSciNet  MATH  Google Scholar 

  56. V. I. Gromak, Solutions of the second Painlevé equation, Diff. Eqns. 18 (1982), 537–545.

    MATH  Google Scholar 

  57. V. I. Gromak, On the theory of the fourth Painlevé equation, Diff. Eqns. 23 (1987), 506–513.

    MathSciNet  MATH  Google Scholar 

  58. V. I. Gromak, Bäcklund transformations of the higher order Painlevé equations, in: Bäcklund and Darboux Transformations. The Geometry of Solitons, A. Coley, D. Levi, R. Milson, C. Rogers and P. Winternitz (eds.), CRM Proc. Lect. Notes Series, 29, Amer. Math. Soc., Providence, 3–28, 2000.

    Google Scholar 

  59. V. I. Gromak and G. V. Filipuk, The Bäcklund transformations of the fifth Painlevé equation and their applications, Math. Model. Anal. 6 (2001), 221–230.

    MathSciNet  MATH  Google Scholar 

  60. V. I. Gromak, I. Laine and S. Shimomura, Painlevé Differential Equations in the Complex Plane, Studies in Math., vol. 28, de Gruyter, Berlin, New York, 2002.

    Book  Google Scholar 

  61. V. I. Gromak and V. V. Tsegel’nik, Functional relations between solutions to P-type equations, Diff. Eqns. 30 (1994), 1037–1043.

    MathSciNet  MATH  Google Scholar 

  62. A. Hinkkanen and I. Laine, Solutions of the first and second Painlevé equations are meromorphic, J. Anal. Math. 79 (1999), 345–377.

    Article  MathSciNet  MATH  Google Scholar 

  63. A. Hinkkanen and I. Laine, Solutions of a modified third Painlevé equation are meromorphic, J. Anal. Math. 85 (2001), 323–337.

    Article  MathSciNet  MATH  Google Scholar 

  64. A. Hinkkanen and I. Laine, Solutions of a modified fifth Painlevé equation are meromorphic, Rep. Univ. Jyvaskyla Dep. Math. Stat. 83 (2001), 133–146.

    MathSciNet  Google Scholar 

  65. A. Hinkkanen and I. Laine, The meromorphic nature of the sixth Painlevé transcendents, J. Anal. Math. 94 (2004), 319–342.

    Article  MathSciNet  MATH  Google Scholar 

  66. A. N. W. Hone, Crum transformation and rational solutions of the non-focusing nonlinear Schrödinger equation, J. Phys. A: Math. Gen. 30 (1997), 7473–7483.

    Article  MathSciNet  MATH  Google Scholar 

  67. E. L. Ince, Ordinary Differential Equations, Dover, New York, 1956.

    Google Scholar 

  68. A. R. Its, The Painlevé transcendents as nonlinear special functions, in: Painlevé Transcendents, their Asymptotics and Physical Applications, P. Winternitz and D. Levi (eds.), NATO ASI Series B: Physics, vol. 278, Plenum, New York, 49–59, 1992.

    Google Scholar 

  69. K. Iwasaki, K. Kajiwara and T. Nakamura, Generating function associated with the rational solutions of the Painlevé II equation, J. Phys. A: Math. Gen. 35 (2002), L207–L211.

    Article  MathSciNet  MATH  Google Scholar 

  70. K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé: a Modern Theory of Special Functions, vol. 16, Aspects of Mathematics E, Vieweg, Braunschweig, Germany, 1991.

    Book  MATH  Google Scholar 

  71. M. Jimbo and T. Miwa, Monodromy preserving deformations of linear ordinary differential equations with rational coefficients. II, Physica D2 (1981), 407–448.

    MathSciNet  Google Scholar 

  72. M. Jimbo and T. Miwa Solitons and infinite dimensional Lie algebras, Publ. RIMS, Kyoto Univ. 19 (1983), 943–1001.

    Article  MathSciNet  MATH  Google Scholar 

  73. N. Joshi, K. Kajiwara and M. Mazzocco, Generating function associated with the determinant for the solutions of the Painlevé II equation, Astérisque 297 (2005), 67–78.

    Google Scholar 

  74. —, Generating function associated with the determinant for the solutions of the Painlevé IV equation preprint arXiv:nlin.SI/0512041 (2005).

  75. K. Kajiwara, On a q-difference Painlevé III equation: II. Rational solutions, J. Nonl. Math. Phys. 10 (2003), 282–303.

    Article  MathSciNet  MATH  Google Scholar 

  76. K. Kajiwara and T. Masuda, A generalization of determinant formulae for the solutions of Painlevé II and XXXIV equations, J. Phys. A: Math. Gen. 32 (1999), 3763–3778.

    Article  MathSciNet  MATH  Google Scholar 

  77. K. Kajiwara and T. Masuda, On the Umemura polynomials for the Painlevé III equation, Phys. Lett. A260 (1999), 462–467.

    MathSciNet  Google Scholar 

  78. K. Kajiwara and Y. Ohta, Determinantal structure of the rational solutions for the Painlevé II equation, J. Math. Phys. 37 (1996), 4393–4704.

    Article  MathSciNet  Google Scholar 

  79. K. Kajiwara and Y. Ohta, Determinant structure of the rational solutions for the Painlevé IV equation, J. Phys. A: Math. Gen. 31 (1998), 2431–2446.

    Article  MathSciNet  MATH  Google Scholar 

  80. Y. Kametaka, On poles of the rational solution of the Toda equation of Painlevé-II type, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), 358–360.

    Article  MathSciNet  MATH  Google Scholar 

  81. Y. Kametaka, M. Noda, Y. Fukui and S. Hirano, A numerical approach to Toda equation and Painlevé II equation, Mem. Fac. Eng. Ehime Univ. 9 (1986), 1–24.

    Google Scholar 

  82. M. Kaneko and H. Ochiai, On coefficients of Yablonskii-Vorob’ev polynomials, J. Math. Soc. Jpn. 55 (2003), 985–993.

    Article  MathSciNet  MATH  Google Scholar 

  83. A. Kasman, Bispectral KP solutions and linearization of Calogero-Moser particle systems, Commun. Math. Phys. 172 (1995), 427–448.

    Article  MathSciNet  MATH  Google Scholar 

  84. A. N. Kirillov and M. Taneda, Generalized Umemura polynomials and Hirota-Miwa equations, in: MathPhys Odyssey, 2001, M. Kashiwara and T. Miwa (eds.), Prog. Math. Phys., 23, Birkhauser-Boston, Boston, MA, 313–331, 2002.

    Google Scholar 

  85. A. N. Kirillov and M. Taneda, Generalized Umemura polynomials, Rocky Mount. J. Math. 32 (2002), 691–702.

    Article  MathSciNet  MATH  Google Scholar 

  86. I. Krichever, Rational solutions of Kadomtsev-Petviashvili equation and integrable systems of n particles on a line, Funct. Anal. Appl. 12 (1978), 59–61.

    Article  MATH  Google Scholar 

  87. M. D. Kruskal, The Kortweg-de Vries equation and related evolution equations, in: Non-linear Wave Motion, A.C. Newell (ed.), Lect. Appl. Math., 15, pp. 61–83. Amer. Math. Soc., Providence, RI, 1974.

    Google Scholar 

  88. N.A. Lukashevich, Elementary solutions of certain Painlevé equations, Diff. Eqns. 1 (1965), 561–564.

    Google Scholar 

  89. N.A. Lukashevich, The theory of Painlevé’s fourth equation, Diff. Eqns. 3 (1967), 395–399.

    Google Scholar 

  90. N.A. Lukashevich, On the theory of Painlevé’s third equation, Diff. Eqns. 3 (1967), 994–999.

    Google Scholar 

  91. S. V. Manakov, V. E. Zakharov, L. A. Bordag, A. R. Its and V. B. Matveev, Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction, Phys. Lett. 63A (1977), 205–206.

    Google Scholar 

  92. V. G. Marikhin, Coulomb gas representation for rational solutions of the Painlevé equations, Theo. Math. Phys. 127 (2001), 646–663.

    Article  MathSciNet  MATH  Google Scholar 

  93. V. G. Marikhin, A. B. Shabat, M. Boiti and F. Pempinelli, Self-similar solutions of equations of the nonlinear Schrödinger type, J. Exp. Theor. Phys. 90 (2000), 533–561.

    MathSciNet  Google Scholar 

  94. K. Masuda, Rational solutions of the A4 Painlevé equation, Proc. Japan Acad., Ser. A 81 (2005), 85–88.

    Article  Google Scholar 

  95. T. Masuda, On a class of algebraic solutions to Painlevé VI equation, its determinant formula and coalescence cascade, Funkcial. Ekvac. 46 (2003), 121–171.

    Article  MathSciNet  MATH  Google Scholar 

  96. T. Masuda, On the rational solutions of q-Painlevé V equation, Nagoya Math. J. 169 (2003), 119–143.

    MathSciNet  MATH  Google Scholar 

  97. T. Masuda, Special polynomials associated with the Noumi-Yamada system of type A5 (1), Funkcial. Ekvac. 48 (2005), 231–246.

    Article  MathSciNet  MATH  Google Scholar 

  98. T. Masuda, Y. Ohta and K. Kajiwara, A determinant formula for a class of rational solutions of Painlevé V equation, Nagoya Math. J. 168 (2002), 1–25.

    MathSciNet  MATH  Google Scholar 

  99. Y. Matsuno, Exact multi-soliton solution of the Benjamin-Ono equation, J. Phys. A: Math. Gen. 12 (1979), 619–621.

    Article  MATH  Google Scholar 

  100. A. E. Milne, P. A. Clarkson and A. P. Bassom, Bäcklund transformations and solution hierarchies for the third Painlevé equation, Stud. Appl. Math. 98 (1997), 139–194.

    Article  MathSciNet  MATH  Google Scholar 

  101. Y. Murata, Rational solutions of the second and the fourth Painlevé equations, Funkcial. Ekvac. 28 (1985), 1–32.

    MathSciNet  MATH  Google Scholar 

  102. Y. Murata, Classical solutions of the third Painlevé equations, Nagoya Math. J. 139 (1995), 37–65.

    MathSciNet  MATH  Google Scholar 

  103. A. Nakamura and R. Hirota, A new example of explode-decay solitary waves in one-dimension, J. Phys. Soc. Japan 54 (1985), 491–499.

    Article  MathSciNet  Google Scholar 

  104. F. W. Nijhoff, J. Satsuma, K. Kajiwara, B. Grammaticos and A. Ramani, A study of the alternative discrete Painlevé II equation, Inverse Problems 12 (1996), 697–716.

    MathSciNet  MATH  Google Scholar 

  105. J. J. C. Nimmo and N. C. Freeman, Rational solutions of the Korteweg-de Vries equation in Wronskian form, Phys. Lett. A96 (1983), 443–445.

    MathSciNet  Google Scholar 

  106. M. Noumi, Painlevé Equations through Symmetry, Trans. Math. Mono., vol. 223, Amer. Math. Soc., Providence, RI, 2004.

    Google Scholar 

  107. M. Noumi, S. Okada, K. Okamoto and H. Umemura, Special polynomials associated with the Painlevé equations. II, in: Integrable Systems and Algebraic Geometry, M.-H. Saito, Y. Shimizu and R. Ueno (eds.), World Scientific, Singapore, 349–372, 1998.

    Google Scholar 

  108. M. Noumi and Y. Yamada, Affine Weyl groups, discrete dynamical systems and Painlevé equations, Commun. Math. Phys. 199 (1998), 281–295.

    Article  MathSciNet  MATH  Google Scholar 

  109. M. Noumi and Y. Yamada, Umemura polynomials for the Painlevé V equation, Phys. Lett. A247 (1998), 65–69.

    MathSciNet  Google Scholar 

  110. M. Noumi and Y. Yamada, Symmetries in the fourth Painlevé equation and Okamoto polynomials, Nagoya Math. J. 153 (1999), 53–86.

    MathSciNet  MATH  Google Scholar 

  111. Y. Ohyama, On the third Painlevé equations of type D 7 preprint, Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, http://www.math.sci.osaka-u.ac.jp/~ohyama/ohyama-home.html (2001).

  112. Y. Ohyama, H. Kawamuko, H. Sakai and K. Okamoto, Studies on the Painlevé equations V, third Painlevé equations of special type PIII(D 7) and PIII(D 8) preprint, UTMS 2005-17 Graduate School of Mathematics, University of Tokyo, Japan http://faculty.ms.u-tokyo.ac.jp/users/preprint/preprint2005.html (2005).

  113. K. Okamoto, On the τ-function of the Painlevé equations, Physica D2 (1981), 525–535.

    Google Scholar 

  114. K. Okamoto, Studies on the Painlevé equations III. Second and fourth Painlevé equations, PII and PIV, Math. Ann. 275 (1986), 221–255.

    Article  MathSciNet  MATH  Google Scholar 

  115. K. Okamoto, Studies on the Painlevé equations IV. Third Painlevé equation PIII, Funkcial. Ekvac. 30 (1987), 305–332.

    MathSciNet  MATH  Google Scholar 

  116. K. Okamoto, Algebraic relations among six adjacent τ-functions related to the fourth Painlevé equation, Kyushu J. Math. 50 (1996), 513–532.

    Article  MathSciNet  MATH  Google Scholar 

  117. N. Olver and I. V. Barashenkov, Complex sine-Gordon-2: A new algorithm for multivortex solutions on the plane, Theo. Math. Phys. 144 (2005), 1223–1226.

    Article  MathSciNet  MATH  Google Scholar 

  118. D. E. Pelinovsky, Rational solutions of the KP hierarchy and the dynamics of their poles. I. New form of a general rational solution, J. Math. Phys. 35 (1994), 5820–5830.

    Article  MathSciNet  MATH  Google Scholar 

  119. D. E. Pelinovsky, Rational solutions of the KP hierarchy and the dynamics of their poles. II. Construction of the degenerate polynomial solutions, J. Math. Phys. 39 (1998), 5377–5395.

    Article  MathSciNet  MATH  Google Scholar 

  120. E. Picard, Memoire sur la theorie des fonctions algebrique de deux variables, J. de Math. 5 (1889), 135–318.

    Google Scholar 

  121. A. Ramani, B. Grammaticos, T. Tamizhmani and K. M. Tamizhmani, On a transcendental equation related to Painlevé III, and its discrete forms, J. Phys. A: Math. Gen. 33 (2000), 579–590.

    MathSciNet  MATH  Google Scholar 

  122. A. Ramani, B. Grammaticos and J. Hietarinta, Discrete versions of the Painlevé equations, Phys. Rev. Lett. 67 (1991), 1829–1832.

    Article  MathSciNet  MATH  Google Scholar 

  123. D. P. Roberts, Discriminants of some Painlevé polynomials, in: Number Theory for the Millennium, III, M.A. Bennett, B.C. Berndt, N. Boston, H. G. Diamond, A. J. Hildebrand and W. Philipp (eds.), A K Peters, Natick MA, pp. 205–221, 2003.

    Google Scholar 

  124. R. Sachs, On the integrable variant of the Boussinesq system: Painlevé property, rational solutions, a related many-body system, and equivalence with the AKNS hierarchy, Physica 30D (1988), 1–27.

    MathSciNet  Google Scholar 

  125. H. Sakai, Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Commun. Math. Phys. 220 (2001), 165–229.

    Article  MATH  Google Scholar 

  126. J. Satsuma and M.J. Ablowitz, Two-dimensional lumps in nonlinear dispersive systems, J. Math. Phys. 20 (1979), 1496–1503.

    Article  MathSciNet  MATH  Google Scholar 

  127. J. Satsuma and Y. Ishimori, Periodic wave and rational soliton solutions of the Benjamin-Ono equation, J. Phys. Soc. Japan 46 (1979), 681–687.

    Article  Google Scholar 

  128. J. Schiff, Bäcklund transformations of MKdV and Painlevé equations, Nonlinearity 7 (1995), 305–312.

    Article  MathSciNet  Google Scholar 

  129. A. Sen, A. N. W. Hone and P. A. Clarkson, Darboux transformations and the symmetric fourth Painlevé equation, J. Phys. A: Math. Gen. 38 (2005), 9751–9764.

    Article  MathSciNet  MATH  Google Scholar 

  130. S. Shimomura, Value distribution of Painlevé transcendents of the first and second kind, J. Anal. Math. 79 (2000), 333–346.

    Article  MathSciNet  Google Scholar 

  131. S. Shimomura, Value distribution of Painlevé transcendents of the fifth kind, Results Math. 38 (2000), 348–361.

    MathSciNet  MATH  Google Scholar 

  132. S. Shimomura, The first, the second and the fourth Painlevé transcendents are of finite order, Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), 42–45.

    Article  MathSciNet  MATH  Google Scholar 

  133. S. Shimomura, Growth of the first, the second and the fourth Painlevé transcendents, Math. Proc. Camb. Phil. Soc. 134 (2003), 259–269.

    MathSciNet  MATH  Google Scholar 

  134. S. Shimomura, Growth of modified Painlevé transcendents of the fifth and the third kind, Forum Math. 16 (2004), 231–247.

    Article  MathSciNet  MATH  Google Scholar 

  135. T. Shiota, Calogero-Moser hierarchy and KP hierarchy, J. Math. Phys. 35 (1994), 5844–5849.

    Article  MathSciNet  MATH  Google Scholar 

  136. N. Steinmetz, On Painlevé’s equations I, II and IV, J. Anal. Math. 79 (2000), 363–377.

    Article  MathSciNet  Google Scholar 

  137. N. Steinmetz, Value distribution of the Painlevé transcendents, Israeli J. Math. 128 (2001), 29–52.

    Article  MathSciNet  Google Scholar 

  138. N. Steinmetz, Lower estimates for the orders of growth of the second and fourth Painlevé transcendents, Portugaliae Math. 61 (2004), 369–374.

    MathSciNet  MATH  Google Scholar 

  139. N. Steinmetz, Global properties of the Painlevé transcendents: New results and open questions, Ann. Acad. Sci. Fenn.-M. 30 (2005), 71–98.

    MathSciNet  MATH  Google Scholar 

  140. T. J. Stieltjes, Recherches sur les fractions continues, Annales de Toulouse 8 (1884), 1–122.

    Article  MathSciNet  Google Scholar 

  141. K. Takasaki, Spectral curve, Darboux coordinates and Hamiltonian structure of periodic dressing chains, Commun. Math. Phys. 241 (2003), 111–142.

    MathSciNet  MATH  Google Scholar 

  142. M. Taneda, Remarks on the Yablonskii-Vorob’ev polynomials, Nagoya Math. J. 159 (2000), 87–111.

    MathSciNet  MATH  Google Scholar 

  143. M. Taneda, Polynomials associated with an algebraic solution of the sixth Painlevé equation, Japan. J. Math. 27 (2001), 257–274.

    MathSciNet  MATH  Google Scholar 

  144. M. Taneda, Representation of Umemura polynomials for the sixth Painlevé equation by the generalized Jacobi polynomials, in: Physics and Combinatorics, A. N. Kirillov, A. Tsuchiya and H. Umemura (eds.), World Scientific, Singapore, 366–376, 2001.

    Google Scholar 

  145. N. M. Temme, Special Functions. An Introduction to the Classical Functions of Mathematical Physics, Wiley, New York, 1996.

    Book  MATH  Google Scholar 

  146. W. Thickstun, A system of particles equivalent to solitons, J. Math. Anal. Appl. 55 (1976), 335–346.

    Article  MathSciNet  MATH  Google Scholar 

  147. C. A. Tracy and H. Widom, Level-spacing distributions and the Airy kernel, Commun. Math. Phys. 159 (1994), 151–174.

    Article  MathSciNet  MATH  Google Scholar 

  148. C. A. Tracy and H. Widom, Fredholm determinants, differential equations and matrix models, Commun. Math. Phys. 163 (1994), 33–72.

    Article  MathSciNet  MATH  Google Scholar 

  149. T. Tsuda, Rational solutions of the Garnier system in terms of Schur polynomials, Int. Math. Res. Notices 43 (2003), 2341–2358.

    Article  MathSciNet  Google Scholar 

  150. T. Tsuda, Universal characters, integrable chains and the Painlevé equations, Adv. Math. 197 (2005), 587–606.

    Article  MathSciNet  MATH  Google Scholar 

  151. T. Tsuda, Universal characters and q-Painlevé systems, Commun. Math. Phys. 260 (2005), 59–73.

    Article  MathSciNet  MATH  Google Scholar 

  152. T. Tsuda, Tau functions of q-Painlevé III and IV equations, Lett. Math. Phys. 75 (2006), 39–47.

    Article  MathSciNet  MATH  Google Scholar 

  153. —, Toda equation and special polynomials associated with the Garnier system, to appear in Adv. Math.

  154. T. Tsuda and T. Masuda, q-Painlevé VI equation arising from q-UC hierarchy, Commun. Math. Phys. 262 (2006), 595–609.

    Article  MathSciNet  MATH  Google Scholar 

  155. T. Tsuda, K. Okamoto and H. Sakai, Folding transformations of the Painlevé equations, Math. Ann. 331 (2005), 713–738.

    Article  MathSciNet  MATH  Google Scholar 

  156. H. Umemura, Painlevé equations and classical functions, Sugaku Expositions 11 (1998), 77–100.

    MathSciNet  Google Scholar 

  157. H. Umemura, On the transformation group of the second Painlevé equation, Nagoya Math. J. 157 (2000), 15–46.

    MathSciNet  MATH  Google Scholar 

  158. H. Umemura, Painlevé equations in the past 100 Years, A.M.S. Translations 204 (2001), 81–110.

    Google Scholar 

  159. H. Umemura and H. Watanabe, Solutions of the second and fourth Painlevé equations I, Nagoya Math. J. 148 (1997), 151–198.

    MathSciNet  MATH  Google Scholar 

  160. H. Umemura and H. Watanabe, Solutions of the third Painlevé equation I, Nagoya Math. J. 151 (1998), 1–24.

    MathSciNet  MATH  Google Scholar 

  161. A. P. Veselov, Rational Solutions of the KP Equation and Hamiltonian Systems, Russ. Math. Surv. 35 (1980), 239–240.

    Article  MathSciNet  MATH  Google Scholar 

  162. A. P. Veselov, On Stieltjes relations, Painlevé-IV hierarchy and complex monodromy, J. Phys. A: Math. Gen. 34 (2001), 3511–3519.

    Article  MathSciNet  MATH  Google Scholar 

  163. A. P. Veselov and A. B. Shabat, A dressing chain and the spectral theory of the Schrödinger operator, Funct. Anal. Appl. 27 (1993), 1–21.

    Article  MathSciNet  Google Scholar 

  164. A. P. Vorob’ev, On rational solutions of the second Painlevé equation, Diff. Eqns. 1 (1965), 58–59.

    MATH  Google Scholar 

  165. R. Willox and J. Hietarinta, Painlevé equations from Darboux chains: I. PIII-PV, J. Phys. A: Math. Gen. 36 (2003), 10615–10635.

    Article  MathSciNet  MATH  Google Scholar 

  166. A. I. Yablonskii, On rational solutions of the second Painlevé equation, Vesti Akad. Navuk. BSSR Ser. Fiz. Tkh. Nauk. 3 (1959), 30–35.

    Google Scholar 

  167. Y. Yamada, Determinant formulas for the τ-functions of the Painlevé equations of type A, Nagoya Math. J. 156 (1999), 123–134.

    MathSciNet  MATH  Google Scholar 

  168. Y. Yamada, Special polynomials and generalized Painlevé equations, in: Combinatorial Methods in Representation Theory, K. Koike, M. Kashiwara, S. Okada, I. Terada and H. F. Yamada (eds.), Adv. Stud. Pure Math., 28, Kinokuniya, Tokyo, Japan, 391–400, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Clarkson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarkson, P.A. Special Polynomials Associated with Rational Solutions of the Painlevé Equations and Applications to Soliton Equations. Comput. Methods Funct. Theory 6, 329–401 (2006). https://doi.org/10.1007/BF03321618

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321618

Keywords

2000 MSC

Navigation