Skip to main content
Log in

Highly Repetitive DNA Sequences of Pearl Millet: Modulation Among Pennisetum Species and Cereals

  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Two highly repetitive sequences were isolated from Bam HI — based partial genomic library of pearl millet [Pennisetum glaucum (L). R Br]. Time — course digests of pearl millet genomic DNA on hybridization with one of the clones (PGB 625) revealed a ladder of fragments with a ∼ 0.13 kb repeat length while the sequences hybridizing with the other clone (PGB 662) revealed complex organization in the genome. Isoschizomer cleavage demonstrated the absence of methylation at GATC sites in tandem arrays and extensive sequence changes in repeating motifs. Southern blot hybridizations of genomic DNA restriction fragments from five Pennisetum species and seven other cereals with PGB 625 and PGB 662 revealed the nature and extent of sequence variation. Abundance of PGB 625 related sequences in P. purpureum (an allotetraploid) was comparable to that of P. glaucum whereas the abundance of sequences related to the other clone (PGB 662) was very low suggesting differential modulation in the progenitor genome following polyploidization. Signal intensities of the sequences related to these two inserts were low in other Pennisetum species and cereals, indicative of their low copy nature. Thus, these clones can be used as genome — specific probes in tracking genomic changes in wide hybrids and in expanding cereal genome mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flavell R, Ann Rev Plant Physiol, 31, (1980), 569.

    Article  CAS  Google Scholar 

  2. Lapitan N L V, Genome, 35, (1992), 17.

    Article  Google Scholar 

  3. Bedbrook JR, Jones J, O’Dell M, Thompson R D & Flavell RB, Cell, 19 (1980) 545.

    Article  PubMed  CAS  Google Scholar 

  4. Guidet F, Rogowsky P, Taylor C, Song W & Langridge P, Genome, 34, (1991), 81.

    Article  Google Scholar 

  5. Mao L, Zhai W, Hu H & Zhu L, Plant Sci, 100, (1994), 51.

    Article  CAS  Google Scholar 

  6. Peacock WJ, Dennis ES, Rhoades MM & Pryor AJ, Proc Natl Acad Sci, USA, 78, (1981), 4490.

    Article  PubMed  CAS  Google Scholar 

  7. Berlani RE, Davis RW & Walbot V, Plant Mol Biol, 11, (1988), 161.

    Article  CAS  Google Scholar 

  8. De Kochko A, Kiefer MC, Cordesse F, Reddy AS & Delseny M, Theor Appl Genet, 82, (1991), 57.

    Article  Google Scholar 

  9. Mawal V, Lagu M, Moon E, Chang S, Chung M.-C, Wu H.-K, Gupt V, Ranjekar P & Wu R, Genome, 38, (1995), 191.

    Article  PubMed  CAS  Google Scholar 

  10. Wang ZX, Kurata N, Saji S, Katayose V & Minobe V, Theor Appl Genet, 90, (1995), 907.

    Article  CAS  Google Scholar 

  11. Sonina NV, Lushnikova AA, Tihonov AP & Ananiev EV, Theor Appl Genet, 78, (1989), 589.

    Article  CAS  Google Scholar 

  12. Belostotsky DA & Ananiev EV, Theor Appl Genet, 80, (1990), 374.

    Article  Google Scholar 

  13. Vershinin AV, Salina EA, Solovyov VV & Timofeyeva LL, Genome, 33, (1990), 441.

    Article  PubMed  CAS  Google Scholar 

  14. Dover GA, Nature, 299, (1982), 111.

    Article  PubMed  CAS  Google Scholar 

  15. Dover, GA, Linares AR, Bowen T & Hancock JM, Methods Enzymol, 224, (1993), 525.

    Article  PubMed  CAS  Google Scholar 

  16. Wu T & Wu R, Theor Appl Genet, 84, (1992), 136.

    Article  CAS  Google Scholar 

  17. Jones JDG & Flavell RB, Chromosoma, 86, (1982), 613.

    Article  CAS  Google Scholar 

  18. Mclntyre CL, Clarke BC & Appels R, Plant Syst Evol, 160, (1987), 39.

    Article  Google Scholar 

  19. Szurmak B & Dobrzanska M, Plant Mol Biol, 21, (1993), 919.

    Article  PubMed  CAS  Google Scholar 

  20. Xin Z.-V & Appels R, Plant Syst Evol, 160, (1988), 65

    Article  CAS  Google Scholar 

  21. Hueros G, Monte JV & Ferrer E, Theor Appl Genet, 80, (1990), 24.

    Article  CAS  Google Scholar 

  22. Rogowsky PM, Manning S, Liu J-V & Langridge P, Genome, 34, (1991), 88.

    Article  Google Scholar 

  23. Kiefer-Meyer MC, Reddy AS & Delseny M, Genome, 38, (1995), 681.

    Article  PubMed  CAS  Google Scholar 

  24. Cullis CA & Cleary W, Can J Genet Cytol, 28, (1986), 252.

    CAS  Google Scholar 

  25. McClintock B, Stadler Genet Sym, 10, (1978), 25.

    Google Scholar 

  26. May CE & Appels R, Theor Appl Genet, 56, (1980), 17.

    Article  Google Scholar 

  27. Seal AG & Bennett MD, Can J Cytol, 23, (1981), 647.

    Google Scholar 

  28. Kamm A, Galasso I, Schmidt T & Heslop-Harrison JS, Plant Mol Biol, 27, (1995), 853.

    Article  PubMed  CAS  Google Scholar 

  29. Ingham LD, Hannah WW, Baier JW & Hann LC, Mol Gen Genet, 238, (1993), 350.

    Article  PubMed  CAS  Google Scholar 

  30. Kamm A, Schmidt T & Heslop-Harrison JS, Mol Gen Genet, 244, (1994), 420.

    Article  PubMed  CAS  Google Scholar 

  31. Sharp PJ, Kreis M, Shewry PR & Gale MD, Theor Appl Genet, 75, (1988), 286.

    Article  CAS  Google Scholar 

  32. Sambrook J, Fritsch EF & Maniatis T, Molecular cloning: A laboratory Manual, Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY (1989)

    Google Scholar 

  33. Bennett M D & Smith JB, Philos Trans R Soc Lond Ser B. 274 (1976), 227.

    Article  CAS  Google Scholar 

  34. Bouchard RA Int Rev Cytol. 76, (1982), 113

    Article  PubMed  CAS  Google Scholar 

  35. Evans IJ, James AM & Barnes SR, J Mol Biol, 170, (1983), 803.

    Article  PubMed  CAS  Google Scholar 

  36. Grellet F, Delcasso D, Panabieres F & Delseny M, J Mol Biol, 187, (1986), 495.

    Article  PubMed  CAS  Google Scholar 

  37. Li X.-B, Liang C.-Z, Wu H.-G, Zhai W.-X, Huang N & Zhu L.-H, Theor Appl Genet, 92, (1996), 702.

    Article  CAS  Google Scholar 

  38. Goldsbrough PB, Ellis THN & Cullis CA, Nucl Acids Res, 9, (1981), 5895.

    Article  PubMed  CAS  Google Scholar 

  39. Song K, Lu P, Tang K & Osborn TC, Proc Natl Acad Sci, USA, 92, (1995), 7719.

    Article  Google Scholar 

  40. Jauhar PP, Cytogenetics and breeding of pearl millet and related species, Liss, New York (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, G., Bhavna, T. & Subrahmanyam, N.C. Highly Repetitive DNA Sequences of Pearl Millet: Modulation Among Pennisetum Species and Cereals. J. Plant Biochem. Biotechnol. 9, 17–22 (2000). https://doi.org/10.1007/BF03263077

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03263077

Key words

Navigation