Skip to main content
Log in

Environmental Effects on Advanced Materials

  • Material
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This in-depth overview examines a number of key considerations relating to environmental effects on today’s advanced materials. While certainly not inclusive of all environmental issues, the article does investigate high-temperature corrosion and crack growth in ceramics and ceramic composites, hydrogen effects on ceramics, hydrogen effects on fracture of intermetallics, and corrosion and hydroen effects in amorphous or glassy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Billy, “The Kinetics of Gas-Solid Reactions and Environmental Degradation of Nitrogen Ceramics,” Progress in Nitrogen Ceramics, F.L. Riley, ed., Martinus Nijhoff Publ., Boston (1983), pp. 403–419.

    Chapter  Google Scholar 

  2. J.A. Costello and R.E. Tressler, “Oxidation Kinetics of Silicon Carbide Crystals and Ceramics: I, In Dry Oxygen,” J. Am. Cer. Soc., 69 (1986), pp. 674–681.

    Article  Google Scholar 

  3. J.I. Federer, “Corrosion of Materials by High-Temperature Industrial Combustion Environments—A Summary,” ORNL/TM-9903 (1986), Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  4. J.R. Blachere and F.S. Pettit, “High Temperature Corrosion of Ceramics,” DOE/ER/10915-4 (1984), University of Pittsburgh, Pittsburgh, PA.

    Google Scholar 

  5. W.L. Fielder, “Oxidation and Hot Corrosion of Hot-Pressed Si3N4 at 1000°C,” NASA-TM-86977 (1985), NASA Lewis Research Center, Cleveland, OH.

    Google Scholar 

  6. N.S. Jacobson, “Kinetics and Mechanism of Corrosion of SiC by Molten Salts,” J. Am. Cer. Soc., 69 (1986), pp. 74–82.

    Article  Google Scholar 

  7. W.C. Bourne and R.E. Tressler, “Molten Salt Degradation of Si3N4 Ceramics,” Am. Cer. Soc. Bull., vol. 59, no. 4 (1980), pp. 443–452.

    Google Scholar 

  8. G.C. Wei and C.L. White, “High Temperature Behavior of Pressureless-Sintered SiC in a Steel Soaking Pit Environment,” JAm. Cer. Soc. Bull., 63 (1984), pp. 890–893.

    Google Scholar 

  9. M.K. Ferber, J. Ogle, V.J. Tennary and T. Henson, “Characterization of Corrosion Mechanisms Occurring in a Sintered SiC Exposed to Basic Coal Slags,” J. Am. Cer. Soc., 68 (1985), pp. 191–197.

    Article  Google Scholar 

  10. J.W. Adam and D.C. Larsen, “Evaluation of Corrosion/ Erosion Behavior ofVarious Ceramic Materials,” AFWAL-TR-84-4067 (1984), IIT Research Institute, Chicago, IL.

    Google Scholar 

  11. R.N. Katz, G.D. Quinn and E.M. Lenoe, “High Temperature Static Fatigue in Ceramics,” Fatigue, Environment, and Temperature Effects, Plenum Press, N.Y. (1983), pp. 221–230.

    Google Scholar 

  12. A. Bouarroudj, P. Goursat and J.L. Besson, “Oxidation Resistance and Creep Behavior of a Silicon Nitride Ceramic Densified with Y2O3,” J. Mat. Sci., 20 (1985), pp. 1150–1159.

    Article  Google Scholar 

  13. F.F. Lange, B.I. David and M.G. Metcalf, “Strengthening of Polyphase Materials Through Oxidation,” J. Mat. Sci., 18, 1983, pp. 1497–1505.

    Article  Google Scholar 

  14. K.D. McHenry and R.E. Tressler, “High Temperature Dynamic Fatigue of Hot-Pressed SiC and Sintered α-SiC,” Am. Cer. Soc. Bull., 59 (1980), pp. 459–461.

    Google Scholar 

  15. E.J. Minford, D.M. Kupp and R.E. Tressler, “Static Fatigue Limit for Sintered Silicon Carbide at Elevated Temperatures,” J. Am. Cer. Soc., 66, 1983, pp. 769–773.

    Article  Google Scholar 

  16. R.E. Tressler, E.J. Minford and D.F. Carrol, “Static Fatigue Limit for Silicon Carbide Based Ceramics—Flaw Blunting vs. Flaw Growth,” Creep and Fracture of Engineering Materials and Structures, Part 1, B. Wilshire and D.R.J. Owen, eds., Pineridge Press, Swansea, U.K. (1984), pp. 551–563.

    Google Scholar 

  17. P.F. Becher, “Strength Retention in SiC Ceramics After Long-Term Oxidation,” J. Am. Cer. Soc. Communication, 66 (1983), pp. C120–C121.

    Article  Google Scholar 

  18. D.F. Carrol and R.E. Tressler, “Time-Dependent Strength of Siliconized Silicon Carbide Under Stress at 1000° and 1100°C,” J. Am. Cer. Soc., 68 (1985), pp. 143–146.

    Article  Google Scholar 

  19. K. Jakus, J.E. Ritter, Jr. and W.P. Rogers, “Strength of Hot-Pressed Silicon Nitride After High Temperature Exposure,” J. Am. Cer. Soc., 67 (1984), pp. 471–475.

    Article  Google Scholar 

  20. S.M. Wiederhorn and N.J. Tighe, “Structural Reliability of Yttria-Doped Hot-Pressed Silicon Nitride at Elevated Temperatures,” J. Am. Cer. Soc., 66 (1983), pp. 884–889.

    Article  Google Scholar 

  21. G.D. Quinn and L. Swank, “Static Fatigue of Preoxidized Hot-Pressed Silicon Nitride,” J. Am. Cer. Soc. Communications, 66 (1983), pp. C31–C32.

    Google Scholar 

  22. J.L. Smialek and N.S. Jacobson, “Mechanism of Strength Degradation for Hot Corrosion of α-SiC,” J. Am. Cer. Soc., 69 (1986), pp. 741–752.

    Article  Google Scholar 

  23. D.R. Clarke, “High Temperature Environmental Strength Degradation of a Hot-Pressed Silicon Nitride: An Experimental Test,” J. Am. Cer. Soc., 66 (1983), pp. 156–158.

    Article  Google Scholar 

  24. H.C. Cao, B.J. Dalgleish, C. Hsueh and A.G. Evans, “High Temperature Stress Corrosion Cracking in Ceramics,” J. Am. Cer. Soc., 70 (1987), pp. 257–264.

    Article  Google Scholar 

  25. D.C. Larsen, J.W. Adams, S.A. Bortz and R. Ruh, “Evidence of Strength Degradation by Subcriticai Crack Growth in Si3N4 and SiC,” Fracture Mechanics of Ceramics V.6, R.C. Bradt, et al., Plenum Press, N.Y. (1983), pp. 571–585.

    Google Scholar 

  26. G.D. Quinn, “Slow Crack Growth In Hot-Pressed Silicon Nitride,” Fracture Mechanics of Ceramics V.6, R.C. Bradt, et al., eds., Plenum Press, N.Y. (1983), pp. 603–636.

    Google Scholar 

  27. P.K. Khandelwal, J. Chang and P.W. Heitman, “Slow Crack Growth in Sintered Silicon Nitride,” Fracture Mechanics of Ceramics V.8, R.C. Bradt, et al., eds., Plenum Press, N.Y. (1986), pp. 351–362.

    Chapter  Google Scholar 

  28. E.J. Minford and R.E. Tressler, “Determination of Threshold Stress Intensity for Crack Growth at High Temperature in Silicon Carbide Ceramics,” J. Am. Cer. Soc., 66 (1983), pp. 338–340.

    Article  Google Scholar 

  29. B.J. Dalgleish, E. Slamovich and A.G. Evans, “High Temperature Failure of Ceramics,” J. Mat. Energy Systems, 8 (1986), pp. 211–225.

    Article  Google Scholar 

  30. K.D. McHenry and R.F. Tressler, “Subcriticai Crack Growth in Silicon Carbide,” J. Mat. Sci., 12 (1977), pp. 1272–1278.

    Article  Google Scholar 

  31. J.L. Henshall and D.J. Rowcliffe, “Kic and Delayed Fracture Measurements on Hot-Pressed SiC,” J. Am. Cer. Soc., 62 (1979), pp. 36–41.

    Article  Google Scholar 

  32. J.L. Henshall, “The Mechanism and Mechanics of Subcriticai Crack Propagation in Hot-Pressed SiC Above 1000°C,” Advances in Fracture Research (Fracture 81), D. Francois, ed., Pergamon Press, N.Y. (1981), pp. 1541–1549.

    Google Scholar 

  33. T.L. Chu and R.B. Cambell, “Chemical Etching of Silicon Carbide with Hydrogen,” J. Electrochem. Soc., 112, 9 (1965), p. 955.

    Article  Google Scholar 

  34. J.M. Harris, H.C. Gatos and A.F. Witt, “Etching Characteristics of Silicon Carbide,” J. Electrochem. Soc., 116, 3 (1969), p. 380.

    Article  Google Scholar 

  35. G. Fischman, S.D. Brown and A. Zangvil, “Hydrogenation of SiC Theory and Experiments,” Mat. Sci. Eng., 71, 5 (1985), pp. 295–302.

    Article  Google Scholar 

  36. P.D. Jero and S. Brown, “The Effect of High Temperature Hydrogenation on the Fracture Strength of a Sintered Alpha SiC,” presented at the 87th Annual Meeting, the American Ceramic Society, Chicago, IL, May 8, 1985.

    Google Scholar 

  37. G.W. Hallum and T.P. Herbell, Adv. Cer. Mat., vol. 3 (1988), p. 171.

    Google Scholar 

  38. F.R. Jones, J.W. Rock and J.E. Bailey, J. Mat. Sci., 18 (1983), p. 1059.

    Article  Google Scholar 

  39. E.L. Rodriguez, J. Mat. Sci. Lett., 6 (1987), p. 718.

    Article  Google Scholar 

  40. D.W. Jones and E.J. Suton, Br. Cer. Trans. J., Vol. 86 (1987), p. 40.

    Google Scholar 

  41. S.M. Wiederhorn, E.R. Fuller, Jr. and R. Thomson, Metal. Sci., Aug–Sept. (1980), p. 450.

    Google Scholar 

  42. T.A. Michalske and S.W. Freiman, J. Am. Cer. Soc., vol. 66 (1983), p. 284.

    Article  Google Scholar 

  43. S. Wiederhorn, Communications of the Am. Cer. Soc., vol. 65 (1982), p. C–202.

    Google Scholar 

  44. T.A. Michalske and B.C. Bunker, J. Am. Cer. Soc., vol. 70 (1987), p. 780.

    Article  Google Scholar 

  45. S.M. Johnson, R.D. Brittain, R.H. Lamoreauxand, D.J. Rowcliffe, J. Am. Cer. Soc., vol. 71 (1988), p. C132.

    Google Scholar 

  46. F. Lin, T. Marieb, A. Morrone and S. Nutt, “Thermal Oxidation of Al2O3-SiC Whisker Composites: Mechanisms and Kinetics,” presented at the 1988 Spring Materials Research Symposium, Reno, Nevada.

  47. W.R. Mohn, Res. Dev., 29 (1987), p. 54.

    Google Scholar 

  48. Current Highlights, 6, 3, Publication of the Metal-Matrix Composite Analysis Center, Santa Barbara, CA (1986), p. 1.

  49. Staff Report, Mat. Eng., 6, 53 (1988), p. 105.

    Google Scholar 

  50. A. Mortensen, J. Cornie and M. Flemings, J. Metals, 40, 2 (1988), p. 12.

    Google Scholar 

  51. M.C. Porter and E.G. Wolff in “Advances in Structural Composites,” Paper No. AC-14, Society of Aerospace Materials Process Engineering, 12th National Symposium Exhibit, Western Period Co., North Hollywood, CA (1967).

    Google Scholar 

  52. A.J. Sedriks, J.A.S. Green and D.L. Novak, Metall. Trans., 2 (1971), p. 871.

    Article  Google Scholar 

  53. S.L. Pohlman, Corrosion, 34 (1978), p. 156.

    Google Scholar 

  54. A.P. Divecha, S.G. Fishman and S.D. Karmarkar, J. Metals, 33, 9 (1981), p. 12.

    Google Scholar 

  55. D.M. Aylor and R.M. Kain in “Recent Advances in Composites in the United States and Japan,” ASTM Special Technical Publication 864, J. Vinson and M. Taya, eds., ASTM, Philadelphia (1983), p. 632.

    Google Scholar 

  56. P.P. Trzaskoma, E. McCafferty and C.R. Crowe, J. Electrochem. Soc., 130 (1983), 1804.

    Article  Google Scholar 

  57. P.P. Trzaskoma, Abstract 257, The Electrochemical Society Extended Abstracts, vol. 86-2, San Diego, California (Oct. 19–24, 1986), p. 380.

    Google Scholar 

  58. R.C. Paciej and V.S. Agarwala, Corrosion, 42 (1986), p. 718.

    Article  Google Scholar 

  59. G.H. Reynolds, L. Yang and A. Joshi, “Fundamental Research on Corrosion Mechanisms in Discontinuous SiC/ Al Metal-Matrix Composites,” SBIR Phase 1 Final Report, Contract No. N60921-86-C-0290, MSNW, Inc., San Marcos, CA, (1987).

    Google Scholar 

  60. P.P. Trzaskoma and E. McCafferty, Aluminum Surface Treatment Technology, R.S. Alwitt and G.E. Thompson, eds., the Electrochemical Society, Pennington, NJ (1986), p. 171.

  61. D.F. Hasson, C.R. Crowe, J.S. Ahearn and D.C. Cooke, Failure Mechanisms in High Performance Materials, J.G. Early, T.R. Shives, J.H. Smith, eds., Cambridge University Press, (1985), p. 147.

  62. P.P. Trzaskoma, Corrosion, 42 (1986), p. 609.

    Article  Google Scholar 

  63. P.P. Trzaskoma, J. Electrochem. Soc., 129 (1982), p. 1398.

    Article  Google Scholar 

  64. C.T. Liu and H. Inouye, “Control of Ordered Structure and Ductility of (Fe,Co,Ni)3V alloys,” Metall. Trans. A., 10A (1979), pp. 1515–1525.

    Google Scholar 

  65. C.T. Liu, “Physical Metallurgy and Mechanical Properties of Ductile Ordered Alloys” (Fe,Co,Ni)3V, Intl. Metal. Reviews, 29, 3 (1984), pp. 168–194.

    Article  Google Scholar 

  66. K. Aoki and O. Izumi, “Improvement in Room Temperature Ductility of the L12 Intermetallic Compound Ni3Al by Boron Addition,” Nippon Kinzoku Gakkaishi, 43 (1979), pp. 1190–1196.

    Google Scholar 

  67. C.T. Liu, C.L. White and J.A. Horton, “Effect of Boron on Grain Boundaries in Ni3Al,” Acta Metall., 33 (1985), pp. 213–229.

    Article  Google Scholar 

  68. W.C. Oliver and C.L. White, “The Segregation of Boron and Its Effect on the Fracture of an Ni3Si Based Alloy,” High Temperature Ordered Intermetallic Alloys II, MRS Symposia Series, vol. 81 (1987), pp. 241–246.

    Google Scholar 

  69. K.S. Kumar, Martin Marietta Research Labs, Baltimore, Maryland (1988), private communication.

    Google Scholar 

  70. A.K. Kuruvilla and N.S. Stoloff, “Hydrogen Embrittlement of Ni3Al+B,” Scripta Metall., 19 (1985), pp. 83–87.

    Article  Google Scholar 

  71. G.M. Camus, N.S. Stoloff and D.J. Duquette, “The Effect of Order on Hydrogen Embrittlement of Ni3Fe,” submitted to Acta Metall. (1988).

    Google Scholar 

  72. T. Takasugi and O. Izumi, “Factors Affectingthe Intergranular Hydrogen Embrittlement of Co3Ti,” Acta Metall., 34 (1986), pp. 607–618.

    Article  Google Scholar 

  73. A.K. Kuruvilla, S. Ashok and N.S. Stoloff, “Long Range Order and Hydrogen Embrittlement” Proc. Third Int. Congress on Hydrogen and Materials, Pergamon Press, Oxford (1982), pp. 629–633.

    Google Scholar 

  74. A.K. Kuruvilla and N.S. Stoloff, “Hydrogen Embrittlement of Ordered Alloys” High Temperature Ordered Intermetallic Alloys, MRS Symposia Series, vol. 39 (1985), pp. 229–238.

    Google Scholar 

  75. K.N. Semenenko, V.V. Burnasheva and V.N. Verbetskii, “Interaction of Hydrogen with Intermetallic Compounds,” DofcZady Akademii Nauk SSR, 270, 6 (1983), pp. 1404–1408.

    Google Scholar 

  76. D.S. Shih, G.K. Scarr and G.E. Wasielewski, “Hydrogen Behavior in Ti3Al,” Abstract, J. Metals, 39, 7 (1987), insert p. 7.

    Google Scholar 

  77. A.W. Thompson and J.C. Williams, Carnegie-Mellon University, unpublished research.

  78. B.J. Berkowitz and C. Miller, “The Effect of Ordering on the Hydrogen Embrittlement Susceptibility of Ni2Cr,” Metall. Trans. A, HA (1980), pp. 1877–1881.

    Google Scholar 

  79. G. Camus and N.S. Stoloff, Rensselaer Polytechnic Institute, unpublished.

  80. Y. Ogino and T. Yamasaki, “A Remedial Effect of Boron on Intergranular Hydrogen Embrittlement of Nickel,” Scripta Metall., 15 (1981), pp. 821–823.

    Article  Google Scholar 

  81. A.K. Kuruvilla, “Crack Growth in Ordered Alloys,” Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, May 1985.

    Google Scholar 

  82. A. Khan, Pratt and Whitney Aircraft, unpublished research. 83. Proc. of the 6th Int’l Conf. on Rapidly Quenched Metals, R.W. Cochrane and J.O. Strom-Olsen, eds., Mat. Sci. Eng. (1988), pp. 97–99.

  83. K. Asami, A. Kawashima and K. Hashimoto, Mat. Sci. Eng., 475 (1988), p. 99.

    Google Scholar 

  84. K. Hashimoto and T. Masumoto, Treatise Mat. Sci. Technol., H. Herman, ed., 20 (1981), p. 291.

    Google Scholar 

  85. K. Hashimoto, Rapidly Quenched Metals, S. Steeb and H. Warlimont, eds., Elsevier Science Publishing Company, Inc., NY (1985), p. 1449.

  86. M.D. Archer, C.C. Corke and B.H. Harji, Electrochimica Acta, 32 (1987), p. 1449.

    Article  Google Scholar 

  87. M. Naka, K. Hashimoto and T. Masumoto, J. Non-Cryst. Sol., 30 (1978), p. 29.

    Article  Google Scholar 

  88. J.C. Turn and R.M. Latanision, Corrosion, 39 (1983), p. 271.

    Article  Google Scholar 

  89. K. Shimamura, K. Miura, A. Kawashima, K. Asami and K. Hashimoto, Corrosion, Electrochemistry and Catalysis of Metallic Glasses, R.B. Diegle and K. Hashimoto, eds., the Electrochemical Society, Inc., Pennington, NJ (1988), p. 232.

  90. H. Yoshioka, A. Kawashima, K. Asami and K. Hashimoto, ibid, p. 242.

  91. P.M. Nataishan, E. McCafferty and G.K. Hubler, J. Electrochem. Soc., 135 (1988), p. 321.

    Article  Google Scholar 

  92. A. Mitsuhashi, K. Asami, A. Kawashima and K. Hashimoto, Corros. Sci., 27 (1987), p. 957.

    Article  Google Scholar 

  93. M. Naka, K. Hashimoto and T. Masumoto, J. Jpn. Inst. Met., 38 (1974), p. 835.

    Google Scholar 

  94. M. Naka, K. Hashimoto and T. Masumoto, J. Non-Cryst. Sol., 28 (1978), p. 403; M. Naka, K. Hashimoto and T. Masumoto, J. Non-Cryst. Sol., 34 (1979), p. 257; T. Masumoto and K. Hashimoto, J. Physique, 41 (1980), p. 862.

    Article  Google Scholar 

  95. V. Brusic, R.D. Maclnnes and J. Aboaf, Passivity of Metals, R.P. Frankenthal and J. Kruger, eds., the Electrochemical Society, Inc., Pennington, NJ (1978).

  96. V.I. Kolotyrkin, S.A. Sokolov, I.A. Novokhatskii, V.M. Knyazheva, V.I. Lad’yanov and I.I. Usatyuk, Zashchita Metallov, 23 (1987), p. 75; Protection of Metals, 23 (1987), p. 55.

    Google Scholar 

  97. M. Janik-Czachor and H. Viefhaus, Corrosion, Electrochemistry and Catalysis of Metallic Glasses, R.B. Diegle and K. Hashimoto, eds., the Electrochemical Society, Inc., Pennington, NJ (1988).

  98. P. Cadet, Doctoral Thesis, L’Universite Pierre et Marie Curie, (1983); P. Cadet, M. Keddam and H. Takenouti, Passivity of Metals and Semiconductors, M. Froment, ed., Elsevier, Amsterdam (1983), p. 311.

    Google Scholar 

  99. G.T. Burstein, Corrosion, 37 (1981), p. 549.

    Article  Google Scholar 

  100. T.P. Moffat, W.F. Flanagan and B.D. Lichter, Corrosion, 43 (1987), p. 589.

    Article  Google Scholar 

  101. C.R. Clayton, M.A. Helfand, Y.C. Lu, R.B. Diegle and N.R. Sorensen, J. Electrochem. Soc., 135 (1988), p. 1085.

    Article  Google Scholar 

  102. P. Marcus and O. Oda, Memoires Scientifiques Revue Metallurgie (1979), p. 715.

    Google Scholar 

  103. M.A. Helfand, C.R. Clayton, R.B. Diegle and N.R. Sorensen, Corrosion, Electrochemistry and Catalysis of Metallic Glasses, R.B. Diegle and K. Hashimoto, eds., the Electrochemical Society, Inc., Pennington, NJ (1988).

  104. A. Krolikowski, Proc. of 10th ICMC, Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi (1987), p. 1169.

    Google Scholar 

  105. B. Elsener, S. Virtanen and H. Boehni, Electrochimica Acta, 32 (1987), p. 927.

    Article  Google Scholar 

  106. V.Y. Vasil’ev, N.I. Isaev, V.N. Shumilov, A.V. Revyakin, N.N. Rodin, M.B. Zudin and A.G. Kanevskiy, Izv. Akad. Nauk. SSSR Metall., 2 (1983), p. 180.

    Google Scholar 

  107. V.Y. Vasil’ev, N.I. Isaev, V.N. Shumilov, A.N. Klochko, A.I. Zakharov and A.V. Revyakin, Zashchita Metallov, 19, 2 (1983), p. 243; Protection of Metals, 19, 2 (1983), p. 203.

    Google Scholar 

  108. N.N. Rodin, V.Y. Vasil’ev, M.B. Zudin, V.P. Fishchenko and L.P. Kuznetsov, Zashchita Metallov, 19, 2 (1983), p. 246; Protection of Metals, 19, 2 (1983), p. 205

    Google Scholar 

  109. V.Y. Vasil’ev, M.V. Zudin and N.N. Rodin, Zashchita Metallov, 19, 3 (1983), p. 401; Protection of Metals, 19, 3 (1983), p. 325.

    Google Scholar 

  110. V.Y. Vasil’ev, E.V. Sotnikova, I.N. Shabanova, N.N. Rodin and I.A. Blinova, Zashchita Metallov, 22, 6 (1986), p. 949; Protection of Metals, 22, 6 (1986), p. 749.

    Google Scholar 

  111. T.P. Moffat, R.R. Ruf and R.M. Latanision, Corrosion, Electrochemistry and Catalysis of Metallic Glasses, R.B. Diegle and K. Hashimoto, eds., the Electrochemical Society, Inc., Pennington, NJ (1988).

  112. D.R. Baer and M.T. Thomas, Chemistry and Physics of Rapidly Solidified Materials, B.J. Berkowitz and R.O. Scattergood, eds., TMS-AIME Proceedings, (1983).

  113. M.T. Thomas and D.R. Baer, Proc. 4th Int’l Conf. on Rapidly Quenched Metals, T. Masumoto and K. Suzuki, eds., Sendai, (1981).

  114. N.R. Sorensen, F.J. Hunkeler and R.M. Latanision, Corrosion, 40 (1984), p. 619.

    Article  Google Scholar 

  115. C.R. Clayton, M.A. Helfand, R.B. Diegle and N.R. Sorensen, Corrosion, Electrochemistry and Catalysis of Metallic Glasses, R.B. Diegle and K. Hashimoto, eds., the Electrochemical Society, Inc., Pennington, NJ (1988).

  116. S.K. Das and L.A. Davis. Mat. Sci. Eng., 98 (1988), p. 1

    Article  Google Scholar 

  117. G.L. Makar and P.J. Moran, Corrosion Abstracts— Poster Session, NACE 1988 Annual Meeting.

  118. T.P. Moffat, W.F. Flanagan and B.D. Lichter, J. Electrochem. Soc. 135 (1988), p. 2712.

    Article  Google Scholar 

  119. D. Huerta and K.E. Heusler, J. Non-Cryst. Sol., 56 (1983), p. 261.

    Article  Google Scholar 

  120. M. Janik-Czachor and B. Mazurkiewicz, Corrosion, 43 (1987), p. 194.

    Article  Google Scholar 

  121. F. Hilbert, Y. Miyoshi, G. Eichkorn and W.J. Lorenz, J. Electrochem. Soc., 118 (1971), p. 1919.

    Article  Google Scholar 

  122. V.Y. Vasil’ev, A.Y. Chechetkin, E.V. Melinikova, Z.I. Kudryavtseva and N.A. Zhuchkova, Zashchita Metallov, 22, 3 (1986), p. 360; Protection of Metals, 22, 3 (1986), p. 292.

    Google Scholar 

  123. K. Hashimoto, K. Osad, T. Masumoto and S. Shimodaira, Corros. Sci., 16 (1976), p. 7.

    Article  Google Scholar 

  124. Z. Szklarska-Smialowska, Pitting Corrosion of Metals, NACE, Houston, (1986).

    Google Scholar 

  125. T. Tsuru and R.M. Latanision, J. Electrochem. Soc., 129 (1982), p. 1402.

    Article  Google Scholar 

  126. C.A. Pampillo, J. Mat. Sci., 10, (1975), p. 1194.

    Article  Google Scholar 

  127. A Kawashima, K. Hashimoto and T. Masumoto, Corros. Sci., 16, (1976), p. 935.

    Article  Google Scholar 

  128. M.D. Archer and R.J. McKim, J. Mat. Sci., 18, (1983), p. 1125; Corrosion, 39, (1983), p. 91.

    Article  Google Scholar 

  129. V. Yu. Vasil’ev, Zasch. Met., 20, (1984), p. 263.

    Google Scholar 

  130. T.P. Moffat, W.F. Flanagan and B.D. Lichter, Vanderbilt University, (1984), unpublished research.

    Google Scholar 

  131. C.R. Clayton, K.G.K. Doss, Y.F. Wang, J.B. Warren and G.K. Hubler, Ion Implantation into Metals, V. Ashworth, W.A. Grant and R.P.M. Proctor, eds., Pergamon Press, New York, NY (1982), p. 67.

  132. M. Ratzker, D.S. Lashmore and K.W. Pratt, Plating and Surface Finishing (1986), p. 74.

    Google Scholar 

  133. N. Usuzaka, H. Yanaguchi and T. Watanabe, Mat. Sci. Eng., 99 (1988), p. 105.

    Article  Google Scholar 

  134. M. Kamagai, Y. Samata, S. Jikihara, A. Kawashimi, K. Asami and K. Hashimoto, Mat. Sci. Eng., 99 (1988), p. 489.

    Article  Google Scholar 

  135. C.W. Draper, J.T. Franey, J.M. Gibson, T.E. Gradei, D.C. Jacobson, G.W. Kammlott and J.M. Poate, J. Mat. Res., 2 (1987), p. 35.

    Article  Google Scholar 

  136. R. Wang and M.D. Merz, Corrosion, 40 (1984), p. 272.

    Article  Google Scholar 

  137. K. Omuro, H. Miura, S. Isu and K. Ikuta, Mat. Sci. Eng., 98, (1988), p. 399.

    Article  Google Scholar 

  138. Y. Kawamura, M. Tugaki, M. Senco and T. Imura, Mat. Sci. Eng., 98, (1988), p. 415.

    Article  Google Scholar 

  139. Y. Kawamura, M. Tugaki, M. Akai and T. Imura, Mat. Sci. Eng., 98, (1988), p. 444.

    Google Scholar 

  140. M. Tagaki, Y. Kawamura, M. Araki, Y. Kuroyama and T. Imura, Mat. Sci. Eng., 98, (1988), p. 457.

    Article  Google Scholar 

  141. R. Priimmer, Mat. Sci. Eng., 98, (1988), p. 461

    Article  Google Scholar 

Download references

Authors

Additional information

R.H. Jonesreceived his Ph.D. in metallurgy from the University of California, Berkeley, in 1971. He is currently technical leader of the Metals Research Group of the Materials Science Department of Battelle Northwest. Dr. Jones is also a member of TMS.

C.H. Henager, Jr., received his Ph.D. in materials science from the University of Washington in 1983. He is currently senior research scientist at Battelle Northwest. Dr. Henager is also a member of TMS.

Patricia P. Trzaskoma received her Ph.D. in chemistry from American University in 1976.. She is currently a research chemist at the Naval Research Laboratory.

N.S. Stoloff received his Ph.D. in metallurgy from Columbia University in New York City in 1961. He is currently a professor of materials science and engineering at Rensselaer Poloytechnic Institute. Dr. Stoloff is also a member of TMS.

T.P. Moffat received his M.S. in materials science and engineering from Vanderbilt University in 1984. He is currently a Ph.D. candidate and graduate research assistant at the Massachusetts Institute of Technology. Mr. Moffat is also a student member of TMS.

B.D. Licher received his Sc.D. in metallurgy from the Massachusetts Institute of Technology in 1958. He is currently a professor of materials science and engineering at Vanderbilt University. Dr. Lichter is also a member of TMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, R.H., Henager, C.H., Trzaskoma, P.P. et al. Environmental Effects on Advanced Materials. JOM 40, 18–30 (1988). https://doi.org/10.1007/BF03258790

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03258790

Keywords

Navigation