Skip to main content
Log in

The status of metal-matrix composite research and development in Japan

  • Feature
  • Featured Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Although a relatively late entrant to the field of metal matrix composites research and development, Japan has aggressively pursued a campaign of investigation and application of this technology, enabling attainment of a position of prominence in several areas. Achievements both scientific and technical have resulted from coordinating the efforts of government, industries, and universities, focusing on economically viable materials, and seeking a position of leadership in the commercial application of metal-matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.A. Feest, M.J. Ball, and A.R. Biggs, “Report from the OSTEM Mission to Japan” (Harwell Laboratory, U.K., October 1986).

    Google Scholar 

  2. E. Tanikawa, S. Takeyama, and T. Sakakibara, “Mechanical Properties and Fabricability of MMC by Roll Diffusion Bonding Process,” Fourth Japan-U.S. Conference on Composite Materials (Lancaster-Basel, PA: Technomic Publishing, 1988), pp. 449–457.

    Google Scholar 

  3. K. Kuniya and H. Arakawa, “Development of a Copper-Carbon Fiber Composite,” Composites’ 86: Recent Advances in Japan and the United States, CCM-III, ed. K. Kawata, S. Umekawa, and A. Kobayashi (Tokyo: Japan Society for Composite Materials, 1986), pp. 465–472.

    Google Scholar 

  4. I.W. Hall, “The Interface in Carbon-Magnesium Composites: Fibre and Matrix Effects,” J. Mater. Sci., 26 (1991), pp. 776–781.

    CAS  Google Scholar 

  5. A. Mizuta, T. Nakamura, and K. Sakai, “Development of Alumina-Fiber/Aluminum Composite Impeller,” J. of the Iron and Steel Inst. of Jap., 75 (1989), pp. 1783–1789.

    CAS  Google Scholar 

  6. J.S.o.L. Metals (Japan Society of Light Metals, June 1991).

  7. H. Fukunaga, “Applications, Problems and Potential of MMCs Manufactured by Squeeze Casting Process,” Proc. of CANCOM’91 (Montreal, Canada: 1991), pp. 3C5–1–3C5–7.

    Google Scholar 

  8. H. Morimoto, “Effects of HIP Consolidating Temperature on the Mechanical Properties of SiC Whisker Reinforced Aluminum Alloy Composites,” J. of the Iron and Steel Inst. of Jap., 75 (1989), pp. 1541–1548.

    CAS  Google Scholar 

  9. H. Morimoto, H. Iwamura, and K. Kyono, “Powder Forging of SiC Particulate Reinforced Aluminum Alloy Composites,” Eighth International Conference on Composite Materials (ICCM/8), ed. S.W. Tsai and G.S. Springer (Covina, CA: SAMPE, 1991), pp. 17–L–1–17–L–8.

    Google Scholar 

  10. Y. Koya and T. Katayama, “Method for Production of Fiber-Reinforced Metal Composite Material” (1987).

    Google Scholar 

  11. Y. Kagawa, S. Utsonomiya, and M. Imaizumi, “Failure Behaviors of Two-Dimensionally Random-Oriented Short Fiber Reinforced Aluminum Under a Stress Concentration,” Sixth International Conference on Composite Materials, ICCM 6, ed. F.L. Mathews et al. (London: Elsevier Applied Science, 1987), pp. 2.199–2.208.

    Google Scholar 

  12. S. Utsunomiya et al., “Study on Fabrication of MMC with a Laser Beam,” Fourth Japan-U.S. Conference on Composite Materials (Lancaster-Basel, PA: Technomic Publishing, 1988), pp. 467–475.

    Google Scholar 

  13. T. Hattori and S. Sakai, “Mechanical Properties of SiC Whisker Reinforced Aluminum Alloy Matrix Composites,” Mitsubishi Jukogikoo, 25 (1988), pp. 1–5.

    Google Scholar 

  14. I. Shiota, personal communication (1992).

  15. Y. Imai et al., “Improvement of High Temperature Strength of SiCpcs Fiber Reinforced Aluminium Preform Wires by Ni Additron,” J. Jap. Inst. Met., 53 (1989), pp. 1068–1076.

    CAS  Google Scholar 

  16. K. Akutagawa et al., “Reduction of the Friction Coefficient of Metal Matrix Composite under Dry Conditions,” SAE Technical Paper Series, 870441 (1987), pp. 1–8.

    Google Scholar 

  17. N. Suzuki, K. Tanaka, and M. Yamanashi, “Method for Manufacture of Cast Articles of Fiber-Reinforced Aluminum Composite” (1986).

    Google Scholar 

  18. K. Hashimoto, S. Sekiguchi, and K. Yamada, “Shear Properties of MMC by Torsion Tests,” Interfaces in Metal-Ceramic Composites, ed. R.Y. Lin et al. (Warrendale, PA: TMS, 1989), pp. 551–557.

    Google Scholar 

  19. K. Yamada, S. Sekikuchi, and T. Matsumiya, “The Optimum Condition of Compocasting Method for the Particle Reinforced MMC,” 34th Int. SAMPE Symp. (Covina, CA: SAMPE, 1989), pp. 2261–2277.

    Google Scholar 

  20. K. Hashimoto, S. Sekikuchi, and K. Yamada, “Microscopic Heterogeneity in MMC,” Proc. 1st Japan Int. SAMPE Symp., (Covina, CA: SAMPE, 1989), pp. 1037–1042.

    Google Scholar 

  21. M. Koizumi, “Recent Progress of Functionally Gradient Materials in Japan,” Ceram. Eng. Sci. Proc., 13 (1992), pp. 333–346.

    CAS  Google Scholar 

  22. Y. Fujita, “Fabrication and Characteristics of Ceramic Whisker and Short Fiber Reinforced Aluminum Alloys,” J. of the Iron and Steel Inst. of Jap., 75 (1989), pp. 1516–1525.

    CAS  Google Scholar 

  23. T. Nakatsuka, H. Kambara, and H. Hats, “Surface Modification of Aluminum-Boron Double Oxide Whisker and Its Effects on Whisker/Aluminum or Whisker/Thermoplastic Composite,” Controlled Interphases in Composite Materials, Proc. of the Third Int. Conf. on Composite Interfaces UCCI-III), ed. H. Ishida (New York: Elsevier, 1990), pp. 335–342.

    Google Scholar 

  24. Y. Abe et al., “Alumina-Aluminum Composites Fabricated by Squeeze-Casting,” First European Conference on Composite Materials: Developments in the Science and Technology of Composite Materials, ed. A.R. Bunsell, P. Lamicq, and A. Massiah (Bordeaux, France: European Association for Composite Materials, 1985), pp. 604–609.

    Google Scholar 

  25. H. Okamoto, K. Yamatsuta, and K.-I. Nishio, “Fiber-Reinforced Metallic Composite Material,” U.S. Patent 4,515,866 (1985).

    Google Scholar 

  26. K. Yamatsuta and K.-I. Nishio, “Fiber-Reinforced Metal Matrix Composite Material,” U.S. Patent 4,465,741 (1984).

    Google Scholar 

  27. W. Takahashi et al., “Development of New Wear Resistant Carbide Dispersed Titanium Based Composite and Its Application to Automobile Parts,” SAE Paper 900535 (1990).

    Book  Google Scholar 

  28. Y. Morita et al., “High-Temperature Material Properties of Ceramic Particle Composite,” J. of the Iron and Steel Inst. of Jap., 75 (1989), pp. 1596–1603.

    CAS  Google Scholar 

  29. K. Ishikawa, S. Ishizuka, and S. Yamamoto, “Method for Making Hypereutectic Al-Si Alloy Composite Materials,” U.S. patent 4,865,808 (1989).

    Google Scholar 

  30. T. Kyono et al., “Effects of Thermal Cycling on Properties of Carbon Fiber/Aluminum Composites,” Trans. ASME-J. of Eng. Mater. and Tech., 110 (1988), pp. 89–95.

    CAS  Google Scholar 

  31. A. Kitamura, T. Teraoka, and R. Sagara, “Tribological Behavior of Carbon Fiber Reinforced Metals,” Fourth Internotional Conference on Composite Materials, ICCM-IV, ed. T. Hayashi, K. Kawata, and S. Umekawa (Tokyo: Japan Society for Composite Materials, 1982).

    Google Scholar 

  32. K. Atsushei, “Fibre Reinforced Metal Article Manufactured by Placing Fibre Bundle in Mould, Pouring Molten Metal into Cavity, Pressing and Solidifying,” Japan patent 60-29433 (1985).

    Google Scholar 

  33. T. Nishimura et al., “Properties of SiC Whisker Reinforced 6061 Aluminum Alloy Composite,” in Ref. 24, pp. 628–633.

    Google Scholar 

  34. T.T. Long et al., “Wear Resistance of Al-Si Alloys and Aluminum Matrix Composites,” Mater. Trans.-JIM, 32(1991), pp. 181–188.

    CAS  Google Scholar 

  35. S. Okude et al., “Diffusion-Preventive Al2O3 Layer Growth at the Interface of Plasma-Sprayed Niobium and FeCrAlY in a Tungsten Fibre-Reinforced High-Temperature Superalloy Composite,” J. Mater. Sci., 26 (1991), pp. 6809–6816.

    CAS  Google Scholar 

  36. Y. Kamiya, “Composite Material Casting Apparatus,” Japan patent 620-161450 (1987).

    Google Scholar 

  37. S.-I. Masuda and T. Itoh, “Electrostatic Means for Fabricationof Fiber-Reinforced Metals,” IEEE Trans. on Ind. Applic., 25 (1989), p. 552–557.

    CAS  Google Scholar 

  38. S.-I. Yamada, S.-I. Towata, and H. Ikuno, “Mechanical Properties of Aluminum Alloys Reinforced with Continuous Fibers and Dispersoids,” International Symposium on Advances in Cast Reinforced Metal Composites, ed. S.G. Fishman and A.K. Dhingra (Materials Park, OH: ASM, 1988), pp. 109–114.

    Google Scholar 

  39. H. Ikuno, S.-I. Towata, and S.-I. Yamada, “Thermal Cycling Behavior of Carbon Fiber-Reinforced Al Alloy with SiC Particulates and Whiskers,” J. Jap. Inst. Met., 53 (1989), pp. 327–332.

    CAS  Google Scholar 

  40. N. Sato and T. Kurauchi, “Detection of Microcracking in Manufacturing Continuous Fibre-Reinforced Aluminium Composites by Acoustic Emission Measurement,” J. of Mater. Sci. Lett., 11 (1992), pp. 598–600.

    CAS  Google Scholar 

  41. T. Donomoto et al., “Ceramic Fiber Reinforced Piston for High Performance Diesel Engines,” SAE Paper 830252 (1983).

    Book  Google Scholar 

  42. T. Suganuma and A. Tanaka, “Application of Metal Matrix Composites to Diesel Engine Pistons,” J. of the Iron and Steel Inst. of Jap., 75 (1989), pp. 376–383.

    Google Scholar 

  43. M. Kubo, A. Tanaka, and T. Kato, “Development of New Fiber-Reinforced Aluminum Alloy for High-Performance Diesel Engine Pistons,” Japan Soc. of Aut. Eng. Review, 9 (1988), pp. 56–61.

    CAS  Google Scholar 

  44. M. Bacon, “Ford, Toyota to Commercialize Duralcan MMC Brake Rotors,” Materials Edge, 32 (1992), pp. 1.

    Google Scholar 

  45. K. Yamamoto, T. Soeda, and M. Agawa, “Mechanical Properties of SiC Particle Reinforced Aluminum Alloy Composite,” Advanced Materials for Future Industries: Needs and Seeds, eds. I. Kimpara, K. Kagayama, and Y. Kagawa (Tokyo, Japan: International Convention Management, 1991), pp. 780–787.

    Google Scholar 

  46. J. Shimizu et al., “Whisker Reinforced Composites Prepared From Wet Ball Milled Aluminium Powder,” Metal & Ceramic Matrix Composites: Processing, Modeling & Mechanical Behavior, ed. R.B. Bhagat et al. (Warrendale, PA: TMS, 1990), pp. 31–38.

    Google Scholar 

  47. Y. Waku et al., “Mechanical Properties of Si-Ti-C-O Fiber Reinforced Aluminium Composite,” J. of the Iron and Steel Inst. of Jap., 75 (1989), pp. 1563–1570.

    CAS  Google Scholar 

  48. T.B. Williams et al., “Microstructure and Strength of Si-TiC-O Fibre-Reinforced Aluminium and Aluminium Alloys,” J. Mater. Sci., 26 (1991), pp. 4697–4701.

    CAS  Google Scholar 

  49. H. Asanuma et al., “Wear Resistant Properties of SiC Whisker Reinforced Aluminum Composites,” in Ref. 45, pp. 813–820.

    Google Scholar 

  50. Y. Sakai, “Studies of High Performance Composite Materials Using SiC Whisker,” Bull. Jpn. Soc. Mech. Engrs., 27 (1984), pp. 1807–1812.

    CAS  Google Scholar 

  51. H. Fukunaga, “Squeeze Casting Processes for Fiber Reinforced Metals and their Mechanical Properties,” in Ref. 38, pp. 101–107.

    Google Scholar 

  52. K. Goda and H. Fukunaga, “Considerations of the Reliability of Tensile Strength at Elevated Temperature of Unidirectional Metal Matrix Composites,” Composites Sci. and Techn., 35 (1989), pp. 181–193.

    CAS  Google Scholar 

  53. K. Goda and H. Fukunaga, “Evaluation of Tensile Strength of Unidirectional Fiber Reinforced Metal Matrix Composite Materials Using Monte-Carlo Simulation,” J. of the Soc. of Materials Sci. of Japan, 40 (1991), pp. 296–302.

    Google Scholar 

  54. H. Fukunaga and J. Pan, “Squeeze-Cast Structure and Properties of Ceramic Fiber Reinforced Al-Cu Alloys,” Fundamental Relationships Between Microstructure & Mechanical Properties of Metal-Matrix Composites, ed. P.K. Liaw and M.N. Gungor (Warrendale, PA: TMS, 1990), pp. 37–45.

    Google Scholar 

  55. H. Fukunaga, X. Wang, and Y. Aramaki, “Preparation of Intermetallic Compound Matrix Composites by Reaction Squeeze Casting,” J. of Mater. Sci. Lett., 9 (1990), pp. 23–25.

    Google Scholar 

  56. O. Yanagisawa and T. Yano, “Influence of Inter-Fiber Spacing on the Yield Stress of Al-Al3Ni Eutectic Composites,” Trans. of the Jpn. Inst. of Met., 29 (1988), pp. 580–588.

    CAS  Google Scholar 

  57. A. Okada and S.-I. Kitagawa, “AE Signals and Fracture in SiC-Fiber Reinforced Aluminum after Applying Cyclic Deformation,” Mater. Trans. JIM, 31 (1990), pp. 772–777.

    CAS  Google Scholar 

  58. K. Atarashiya, K. Kurokawa, and T. Nagai, “Functionally Gradient Material of the System Ni-MgO, Ni-NiO, Ni-Si3N4 or Al-AlN, by Pressureless Sintering,” Ceram. Eng. Sci. Proc., 13 (1992), pp. 400–407.

    CAS  Google Scholar 

  59. S. Nagata and K. Matsuda, “Effect of Some Factors on the Critical Preheating Temperature of Particles in Producing Metal-Particle Composites by Pressure Casting,” IMONO, Transactions of the Japan Foundrymen’s Society, 53 (1981), pp. 300–304.

    CAS  Google Scholar 

  60. H.M. Cheng et al., “The Tensile Strength of Carbon Fiber Reinforced 6061 Aluminium Alloy Composites in the As-Cast and T6-Treated States,” Scripta Metall. et Mater., 26 (1992), pp. 1475–1480.

    CAS  Google Scholar 

  61. M. Mabuchi et al., “Very High Strain-Rate Superplasticity in a Particulate Si3N4/6061 Aluminum Composite,” Scripta Metall. et Mater., 25 (1991), pp. 2517–2522.

    CAS  Google Scholar 

  62. T. Imai et al., “Effect of Dislocation and Recovery on Si3N4 Whisker Reinforced Aluminium P/M Composite,” in Ref. 46, pp. 235–242.

    Google Scholar 

  63. Y. Nishida et al., “Silicon Nitride Whisker Reinforced Aluminum Alloys Fabricated by Squeeze Casting,” in Ref. 2, pp. 429–438.

    Google Scholar 

  64. M. Mabuchi et al., “Experimental Investigation of Superplastic Behavior in a 20 Vol.% S3N4p/5052 Aluminum Composite,” Scripta Metall. et Mater., 26 (1992), pp. 1839–1844.

    CAS  Google Scholar 

  65. K. Miwa, I. Takashi, and T. Ohashi, “Fabrication of SiC Whisker Reinforced Aluminum Alloy Matrix Compositesby Compocasting Process,” Second Int. Conf. on the Processing of Semi-Solid Alloys and Composites, ed. S.B. Brown and M.C. Flemings (Cambridge, MA: MIT, 1992), pp. 398–405.

    Google Scholar 

  66. A. Shindo, “Chemical Property of Carbon Fiber Surface and Interfacial Compatibility of Composites,” Composite Interfaces, Proc. 1st Int. Conf. on Composite Interfaces, ed. H. Ishida and J.L. Koenig (New York: North-Holland /Elsevier Science Publishers, 1986), pp. 93–100.

    Google Scholar 

  67. N. Sata et al., “Fabrication of a Functionally Gradient Material by Using a Self-Propagating Reaction Process,” Combustion and Plasma Synthesis of High-Temperature Materials, ed. Z.A. Munir and J.B. Holt (New York: VCH, 1990), pp. 195–203.

    Google Scholar 

  68. S. Ochiai and K. Osamura, “Influences of Matrix Ductility, Interfacial Bonding Strength, and Fiber Volume Fraction on Tensile Strength of Unidirectional Metal Matrix Composites,” Metall. Trans. A, 21A (1990), pp. 971–977.

    CAS  Google Scholar 

  69. S. Ochiai et al., “Stress Concentration at a Notch Tip in Unidirectional Metal Matrix Composites,” Metall. Trans. A, 22A (1991), pp. 2085–2095.

    CAS  Google Scholar 

  70. N. Takiuchi et al., “Effects of Oxygen and Temperature on the Surface Tension of Liquid Iron and Its Wettability of Alumina,” J. Jap. Inst. Met., 55 (1991), pp. 180–185.

    CAS  Google Scholar 

  71. Y. Takao, “Yield Stress and Stress-Strain Curve of Fiber Reinforced Matrix with Plasticity,” Adv. Composite Mater., 1 (1991), pp. 235–248.

    Google Scholar 

  72. N. Mori et al., “Wettability and Interactions between Molten Al and Ni-Coated Al2O3 or Pure Ni Substrate,” Journal of the Japan Institute of Metals, 55 (1991), pp. 444–1151.

    CAS  Google Scholar 

  73. K. Ichikawa and M. Achikita, “Production and Properties of Carbide Dispersion-Strengthened Coppers by Compocasting,” J. of the Iron and Steel Inst. of Jap., 75 (1989), pp. 1628–1635.

    CAS  Google Scholar 

  74. K. Hirano, “Near-Threshold Transverse Fatigue Crack Growth Characteristics of Unidirectionally Continuous Fiber Reinforced Metals,” in Ref. 2, pp. 633–642.

    Google Scholar 

  75. K. Tanno et al., “Sintering and Properties of Metal/ Ceramics Composite Particles Produced by Mechanofusion Process,” Advanced Structural Inorganic Composites, ed. P. Vicenzini (Amsterdam, the Netherlands: Elsevier Science Publishers B.V., 1991), pp. 775–784.

    Google Scholar 

  76. M. Kobashi and T. Choh, “Mechanical Property of Particle-Reinforced Metal Matrix Composite Manufactured by Melt Stirring Method,” in Ref. 45, pp. 731–736.

    Google Scholar 

  77. T. Choh and I. Takeuchi, “Relationship Between Interfacial Shear Strength and Reaction of SiC Fiber/Aluminum or Aluminum Alloys,” in Ref. 45, pp. 753–757.

    Google Scholar 

  78. M. Kobashi and T. Choh, “Effects of Alloying Elements on SiC Dispersion in Liquid Aluminum,” Mater. Trans. JIM, 31 (1990), pp. 1101–1107.

    Google Scholar 

  79. N. Kanetake, T. Choh, and M. Nomura, “Microscopic Study of Deformation and Fracture of Particle Dispersed Aluminum Matrix Composites,” in Ref. 45, pp. 788–795.

    Google Scholar 

  80. M. Tsutsui and T. Yamada, “Effects of Fiber and Silicon Contents on Corrosion Behavior of Alumina Fiber-Reinforced Al-Si Alloys in Sulfuric Acid Aqueous Solution,” J. Jap. Inst. Met., 56 (1992), pp. 271–277.

    CAS  Google Scholar 

  81. K. Suganuma et al., “Aluminium Composites Reinforced with a New Aluminium Borate Whisker,” J. of Mater. Sci. Lett., 9 (1990), pp. 633–635.

    CAS  Google Scholar 

  82. K. Suganuma, G. Sasaki, and T. Fujita, “Ni3Al Matrix Composites Reinforced with Alumina Partide/Fiber,” Eighth International Conference on Composite Materials, ICCM 8, ed. S.W. Tsai and G.S. Springer (Covina, CA: SAMPE, 1991), pp. 23E–1–23–E–11.

    Google Scholar 

  83. J.S. Kim, J. Kaneko, and M. Sugamata, “Fabrication and Mechanical Properties of Zn-22mass% Al Superplastic Alloy Composites Reinforced by SiC Whisker,” J. Jap. Inst. Met., 55 (1991), pp. 986–993.

    CAS  Google Scholar 

  84. J.S. Kim, M. Sugamata, and J. Kaneko, “Effect of Hot Extrusion on the Mechanical Properties of SiC Whisker/AZ91 Magnesium Alloy Composites,” J. Jap. Inst. Met., 55 (1991), pp. 521–528.

    CAS  Google Scholar 

  85. Y. Bkeuchi and H. Fujiwara, “Automated System of X-Ray Stress Analysis and Its Application to Matrix Thermal Deformation Behavior in Gamma-Alumina Fiber Reinforced Al,” J. of the Soc. Mat. Sci. Japan, 38 (1989), pp. 391–397.

    Google Scholar 

  86. S. Takahashi, “Preparation of Ni-TiC Metal Composite Material in Space,” Fifth International Conference on Composite Materials, ICCM V, ed. W.C. Harrigan, J. Strife, and A.K. Dhingra (Warrendale, PA: TMS, 1985), pp. 747–754.

    Google Scholar 

  87. T. Namai, Y. Osawa, and M. Kikuchi, “Dispersion of Particles in Aluminum and Copper Alloys by Atomizing Method,” Trans. of the Jpn. Foundrymen’s Soc., 5 (1986), pp. 2932.

    Google Scholar 

  88. C. Masuda et al., “Nondestructive Evaluation of Fibers or Defects in Metal Matrix Composites by X-Ray Computed Tomography Using Synchrotron Radiation,” Structural Composites-Design and Processing Technologies (Materials Park, OH: ASM, 1990), pp. 179–186.

    Google Scholar 

  89. C. Masuda and Y. Tanaka, “Fatigue Properties and Fatigue Fracture Mechanisms of SiC Whiskers or SiC Particulate-Reinforced Aluminum Composites,” J. Mater. Sci., 27 (1992), pp. 413–422.

    CAS  Google Scholar 

  90. E. Ozawa and O. Watanabe, “The Role of the Work Hardening in the Mechanical Behavior of Metal Fiber-Metal Composites,” Composite Materials, Proc. Japan-U.S. Conference, ed. K. Kawata and T. Akasaka (Tokyo, Japan: Society of Composite Materials, 1981), pp. 204–212.

    Google Scholar 

  91. T. Arai et al., “Multi-Layer Coatings for Preventing Diffusion of Nickel into Tungsten Fibers,” J. of the Iron and Steel Inst. of Jap., 75 (1989), pp. 1493–1500.

    CAS  Google Scholar 

  92. D. Bechet et al., “Effects of Alloying Elements in Aluminum on Compatibility between SiC Fibers from Precursors and the Matrices,” Trans. of the National Research Inst. for Metals, Japan, 32 (1990), pp. 1–5.

    Google Scholar 

  93. T. Dan, K. Halada, and Y. Muramatsu, “New Data Processing for the Sessile Drop Technique and the Application to Cu-20 mass%Ni/Al2O3 System,” J. Jap. Inst. Met., 55 (1991), pp. 1123–1129.

    CAS  Google Scholar 

  94. Y. Shinohara et al., “Thermal Stability of NiCrAlY/PSG FGM by Plasma Twin Torches Method,” Iron and Steel Inst. of Jap. Int., 32 (1992), pp. 893–901.

    CAS  Google Scholar 

  95. Y. Imai et al., “Deterioration Factor of SiC/Ti Alloy Composite after Heat Treatment,” Iron and Steel Inst. of Jap. Int., 32 (1992), pp. 917–922.

    CAS  Google Scholar 

  96. F.S. Petit, “High Performance/High Temperature Materials in Japan,” Scientific Bulletin, 17 (1992), pp. 119–130.

    Google Scholar 

  97. M. Hagiwara et al., “Mechanical Properties of Particulate Reinforced Titanium-Based Metal Matrix Composites Produced by the Blended Elemental P/M Route,” Iron and Steel Inst. of Jap. Int., 32 (1992), pp. 909–916.

    CAS  Google Scholar 

  98. K. Nogi, K. Ogino, and N. Iwamoto, “Wettability of SiC Fibers by Liquid Al Alloys and Reaction between SiC Fibers and Liquid Alloys,” Metal Matrix Composites—Processing, Microstructure and Properties, 12th Risø International Symposium on Materials Science, ed. N. Hansen et al. (Roskilde, Denmark: Rise National Laboratory, 1991), pp. 559–564.

    Google Scholar 

  99. K. Nogi et al., “Wettability of MgO Single Crystal by Liquid Pure Ph, Sri and Bi,” Acta Metall. et Mater., 40 (1992), pp. 1045–1050.

    CAS  Google Scholar 

  100. M. Yokota et al., “Wettability of Sn-Ti Alloys on Sintered Al2O3 Plates,” J. Jap. Inst. Met., 53 (1989), pp. 439–444.

    CAS  Google Scholar 

  101. T. Nishino, S. Urai, and M. Naka, “Effects of Zr Addition on Wetting of SiC by Molten Copper,” in Ref. 45, pp. 872–879.

    Google Scholar 

  102. M. Naka and H. Taniguchi, “Reaction and Interface Strength of Silicon Carbide with Ni-Ti Alloys,” in Ref. 45, pp. 852–857.

    Google Scholar 

  103. M. Shimbo, M. Naka, and I. Okamoto, “Wettability of Silicon Carbide by Aluminium, Copper and Silver,” J. of Mater. Sci. Lett., 8 (1989), pp. 663–666.

    CAS  Google Scholar 

  104. X. Ma et al. “Fabrication of TiC/Ni Functionally Gradient Materials and Their Mechanical and Thermal Properties,” Ceram. Eng. Sci. Proc., 13 (1992), pp. 356–364.

    CAS  Google Scholar 

  105. T. Yokoyama, “Dynamic Shear Stress-Strain Characteristics of SiC Whisker Reinforced Aluminum Alloy Composites,” in Ref. 9, pp. 21–D–1–21–D–10.

    Google Scholar 

  106. I. Tsuchitori et al., “Fabrication of Potassium Titanate Whisker Reinforced Aluminum Alloy (AC4C) Composite and Their Some Properties,” J. of the Iran and Steel Inst. of Jap., 75 (1989), pp. 1526–1533.

    CAS  Google Scholar 

  107. I. Tsuchitori and H. Fukunaga, “Reactivity of Potassium Titanate Whiskers with Al Alloys,” J. Jap. Inst. Met., 56 (1992), pp. 333–341.

    CAS  Google Scholar 

  108. H. Yumoto, A. Takahashi, and N. Igata, “Interface Reaction of SiC/Al and SiC(Ti)/Al Composites,” in Ref. 45, pp. 737–743.

    Google Scholar 

  109. K. Nishiyama and S. Umekawa, “Elastic Constants of Fused Silica Glass, Aluminum, Sintered Al-Pb Alloy and SiCw/Al Composite by Cube-Resonance Method,” in Ref. 2, pp. 128–137.

    Google Scholar 

  110. T. Mihara et al., “Elastic Constants of Zirconia/Stainless Steel Sintered Composite Materials Measured by a Line-Focus-Beam Acoustic Microscope,” J. Jap. Inst. Met., 56 (1992), pp. 321–326.

    CAS  Google Scholar 

  111. S. Shibata, T. Mori, and M. Taya, “Stress Relaxation by Dislocation Punching to Radial Direction from a Long Fiber in a Composite,” Scripta Metall. et Mater., 26 (1992), pp. 363–368.

    CAS  Google Scholar 

  112. K. Wakashima and H. Tsukamoto, “Mean-Field Micromechanics Model and Its Application to the Analysis of Thermomechanical Behavior of Composite Materials,” Mater. Sci. & Eng., A146 (1991), pp. 291–316.

    CAS  Google Scholar 

  113. T. Shinoda, H. Liu, Y. Mishima, and T. Suzuki, “Interfacial Compatibility in Ceramic-Fibre Reinforced Metal Composites,” Mater. Sci. & Eng., A146 (1991), pp. 91–104.

    CAS  Google Scholar 

  114. Y. Kagawa and E. Nakata, “Some Mechanical Properties of Carbon Fibre-Reinforced Magnesium-Matrix Composite Fabricated by Squeeze Casting,” J. of Mater. Sci. Lett., 11 (1992), pp. 176–178.

    CAS  Google Scholar 

  115. Y. Kagawa and A. Okura, “Strength and Failure Process of Continuous Fiber-Reinforced Metals,” J. of the Iron and Steel Inst. of Jap., 75 (1989), pp. 1719–1729.

    Google Scholar 

  116. H.S. Yoon, A. Okura, and H. Ichinose, “Study of the Interface of Carbon Fiber Reinforced Aluminum Composite Materials,” Interfacial Phenomena in Composite Materials’ 89, ed. F.R. Jones (London: Butterworths, 1998), pp. 258–263.

    Google Scholar 

  117. S. Kohara and N. Muto, “Fabrication of SiC Whisker-Aluminum Composites,” in Ref. 3, pp. 491–496.

    Google Scholar 

  118. A. Kohyama, H. Tezuka, and S. Saito, in Interfaces in Polymer, Ceramic, and Metal Matrix Composites, ed. H. Ishida (New York: Elsevier Science Publishing, 1988), pp. 125–139.

    Google Scholar 

  119. H. Tezuka et al., “Development of Advanced SiC/Al Composite Materials through Microstructural Evaluation and Design,” Iron and Steel Inst. of Jap. Int., 75 (1989), pp. 1470–1477.

    CAS  Google Scholar 

  120. M. Kiuchi and S. Sugiyama, “Application of Mushy Metal Processing and Forming Technologies to Manufacturing Fiber Reinforced Metals,” in Ref. 65, pp. 382–389.

    Google Scholar 

  121. A. Kobayashi and N. Ohtani, “Two-Stage Fatigue Damage Life of SiC/Al Composites,” in Ref. 2, pp. 599–605.

    Google Scholar 

  122. T. Hasegawa, T. Yakou, and N. Go, “Microstructural Studies on Tensile Fracture of an Aligned Al-Al3Ni Eutectic Composite,” Trans. of the Jpn. Inst. of Met., 29 (1988), pp. 477–483.

    CAS  Google Scholar 

  123. T. Hasegawa et al., “Strengthening Mechanisms in Aluminum-Ceramic Particle Composite Alloys Produced by Mechanical Alloying,” Iron and Steel Inst. of Jap. Int., 32 (1992), pp. 902–908.

    CAS  Google Scholar 

  124. T. Kobayashi et al., “Mechanical Properties of SiC Whisker Reinforced Aluminum Alloys Fabricated by Pressure Casting Method,” in Ref. 38, pp. 205–210.

    Google Scholar 

  125. H.J. Kim et al., “Micromechanical Fracture Process of SiC-Particle Reinforced Aluminium Alloy 6061-T6 Metal Matrix Composites,” Mater. Sci. & Eng., A154 (1992), pp. 35–41.

    CAS  Google Scholar 

  126. Y. Tsunekawa et al., “Flame-Spraying Fabrication of Silicon Carbide Whisker-Reinforced Aluminium,” J. of Mater. Sci. Lett., (1987), pp. 191–193.

    Google Scholar 

  127. Y. Tsunekawa et al., “Centrifugally Cast Aluminium Matrix Composites Containing Segregated Alumina Fibres,” J. of Mater. Sci. Lett., 7 (1988), pp. 830–832.

    CAS  Google Scholar 

  128. E. Nakata, Y. Kagawa, and H. Terao, “Fabrication Method of SiC Fiber Reinforced Aluminum and Aluminum Alloy Composites by Squeeze Casting Method,” Report of the Castings Research Lab., Waseda University, 34 (1983), pp. 27–36.

    CAS  Google Scholar 

  129. N. Yoshimi, H. Nakae, and H. Fujii, “A New Approach to Estimating Wetting in a Reaction System,” Mater. Trans. JIM, 31 (1990), pp. 141–147.

    Google Scholar 

  130. K. Matsuura et al., “Creep Curves of an Aluminum Matrix Composite Reinforced with Continuous Alumina Fibres,” Mater. Sci. & Eng., A151 (1992), pp. L1–L4.

    CAS  Google Scholar 

  131. M. Ebisawa et al., “Production Process of Metal Matrix Composite (MMC) Engine Block,” SAE Paper910835 (February 25, 1991).

    Book  Google Scholar 

  132. T. Hayashi, H. Ushio, and M. Ebisawa, “The Properties of Hybrid Fiber Reinforced Metal and Its Application for Engine Block,” SAE Paper 890557 (1989).

    Book  Google Scholar 

  133. H. Ushio et al., “Internal Combustion Engine,” Japan patent 4,817,578 (1989).

    Google Scholar 

  134. R. Ford, “Recent Developments in Functionally Gradient Materials,” Materials and Processing Report, 7 (1992), pp. 16.

    Google Scholar 

  135. M. Sunakawa, “Current Status of R&D In Japan on Materials for Space Planes”, Amer. Inst. of Aeronautics and Astronautics Technical Paper 91-6096,91-5096 (1991).

    Google Scholar 

  136. N. Sato, “Fabrication of TiB2/Cu Based Functionally Gradient Materialsby SHS Process,” Ceram. Eng. Sci. Proc., 13 (1992), pp. 384–391.

    Google Scholar 

  137. A. Mortensen, V.J. Michaud, and M.C. Flemings, “Pressure Infiltration Processing of Reinforced Aluminum,” JOM, 45 (1) (1993), pp. 36–43.

    Article  CAS  Google Scholar 

  138. Commission of the European Communities-BRITE-EURAM Programme—Synopses of Current Projects 1990–1991 (Luxembourg: Commission of the European Communities, 1991).

  139. M.G. Bader and M.J. Koczak, “Critical Research Directions in Metal Matrix Composites,” European Scientific News and Information Bulletin 91-3 (18) (1991), pp. 18–24.

    Google Scholar 

  140. M.K. Premkumar, W.H. Hunt, and R.R. Sawtell, “Aluminum Composite Materials for Multichip Modules,” JOM, 44 (7) (1992), pp. 24–28.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortensen, A., Koczak, M.J. The status of metal-matrix composite research and development in Japan. JOM 45, 10–18 (1993). https://doi.org/10.1007/BF03222342

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03222342

Keywords

Navigation