Skip to main content

Metal Matrix Composites: Theory, Techniques, and Applications

  • Chapter
  • First Online:
Composite Materials

Abstract

Numerous researches have been carried out on the developments of metal matrix composites (MMCs) in various applications. However, the main problem related to their processing is that controlling the balance between different parameters, such as ductility, strength, toughness, and so on, has created impediments on the way of MMC development due to the lack of knowledge in theory and proper processing technique for a particular application. As a result, its areas of applications become limited. Therefore, proper selection of matrix and reinforced materials and suitable fabrication technique could be fruitful for desired applications. Thus, crucial related theories, processing techniques, most important properties, and various advanced applications of MMCs have been focused in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rawal SP (2001) Metal-matrix composites for space applications. J Mater 53:14–17

    Google Scholar 

  2. Legzdins C, Samarasekera I, Meech J (1997) MMCX – an expert system for metal matrix composite selection and design. Can Metallurg Q 36:177–202

    Article  Google Scholar 

  3. Li XC, Stampfl J, Prinz FB (2000) Mechanical and thermal expansion behavior of laser deposited metal matrix composites of Invar and TiC. Mater Sci Eng A Struct 282:86–90

    Article  Google Scholar 

  4. Occhionero M, Hay RA, Adams RW, Fennessy KP (1999) Aluminum silicon carbide (AlSiC) thermal management packaging for high density packaging applications. In: Proceedings-SPIE the international society for optical engineering, 1999

    Google Scholar 

  5. Saums DL (2004) Developments in selective high thermal conductivity orientation in CTE-compatible substrate and package component materials. In: Semiconductor thermal measurement and management symposium, twentieth annual IEEE, 2004

    Google Scholar 

  6. Korb G, Neubauer E (2001) Thermophysical properties of metal matrix composites, vol 7, MMC-Assess Thematic Network, Seibersdorf.

    Google Scholar 

  7. Korab J, Korb G, Sebo P (1998) Thermal expansion and thermal conductivity of continuous carbon fibre reinforced copper matrix composites. In: Electronics manufacturing technology symposium (IEMT), Europe, 1998

    Google Scholar 

  8. Zweben C (1992) Metal-matrix composites for electronic packaging. J Mater 44:15–23

    Google Scholar 

  9. Prasad DS, Shoba C, Ramanaiah N (2014) Investigations on mechanical properties of aluminum hybrid composites. J Mater Res Technol 3:79–85

    Article  Google Scholar 

  10. Clyne T (2001) Composites: MMC, CMC, PMC. In: Mortensen A (ed) Encyclopaedia of materials: science and technology. Elsevier, USA

    Google Scholar 

  11. Chawla KK (2006) Metal matrix composites. In: Materials science and technology. Wiley online library. doi: 10.1002/9783527603978.mst0150

    Google Scholar 

  12. Taya M, Arsenault RJ (1989) Metal matrix composites: thermomechanical behavior. Elsevier, Burlington

    Google Scholar 

  13. Nair S, Kim H (1992) Modification of the shear lag analysis for determination of elastic modulus of short-fiber (or whisker) reinforced metal matrix composites. J Appl Mech 59:S176–S182

    Article  Google Scholar 

  14. Landis CM, McMeeking RM (1999) Stress concentrations in composites with interface sliding, matrix stiffness and uneven fiber spacing using shear lag theory. Int J Solids Struct 36:4333–4361

    Article  Google Scholar 

  15. Chawla KK (1993) Ceramic matrix composites. Chapman and hall, London

    Book  Google Scholar 

  16. Ochiai S, Osamura K (1990) Influences of matrix ductility, interfacial bonding strength, and fiber volume fraction on tensile strength of unidirectional metal matrix composite. Metallurg Trans A 21:971–977

    Article  Google Scholar 

  17. Ruch PW, Beffort O, Kleiner S, Weber L, Uggowitzer PJ (2006) Selective interfacial bonding in Al(Si) – diamond composites and its effect on thermal conductivity. Compos Sci Technol 66:2677–2685

    Article  Google Scholar 

  18. Ibrahim I, Mohamed F, Lavernia E (1991) Particulate reinforced metal matrix composites – a review. J Mater Sci 26:1137–1156

    Article  Google Scholar 

  19. Hashim J, Looney L, Hashmi M (2002) Particle distribution in cast metal matrix composites – Part I. J Mater Process Technol 123:251–257

    Article  Google Scholar 

  20. Kennedy A, Wyatt S (2001) Characterising particle-matrix interfacial bonding in particulate Al–TiC MMCs produced by different methods. Compos Part A: Appl Sci 32:555–559

    Article  Google Scholar 

  21. Yang H, Topping TD, Wehage K, Jiang L, Lavernia EJ, Schoenung JM (2014) Tensile behavior and strengthening mechanisms in a submicron B4C-reinforced Al trimodal composite. Mater Sci Eng A Struct 616:35–43

    Article  Google Scholar 

  22. Rohatgi PK (1994) Nucleation phenomenon during solidification of metal matrix composites. In: Final report to ONR. University of Wisconsin. Available via http://www.dtic.mil/dtic/tr/fulltext/u2/a317340.pdf. Accessed 10 July 2015

  23. Hashim J, Looney L, Hashmi MSJ (1999) Metal matrix composites: production by the stir casting method. J Mater Process Technol 92–93:1–7

    Article  Google Scholar 

  24. Rohatgi PK (1993) Microstructure formation during solidification of metal matrix composites. Minerals, Metals and Materials Society, Warrendale

    Google Scholar 

  25. Feng Y, Yuan HL, Zhang M (2005) Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes. Mater Charact 55:211–218

    Article  Google Scholar 

  26. Umanath K, Palanikumar K, Selvamani ST (2013) Analysis of dry sliding wear behaviour of Al6061/SiC/Al2O3 hybrid metal matrix composites. Compos Part B: Eng 53:159–168

    Article  Google Scholar 

  27. Clyne TW, Mason JF (1987) The squeeze infiltration process for fabrication of metal-matrix composites. Metallurg Trans A 18:1519–1530

    Article  Google Scholar 

  28. Purazrang K, Kainer KU, Mordike BL (1991) Fracture toughness behaviour of a magnesium alloy metal-matrix composite produced by the infiltration technique. Composites 22:456–462

    Article  Google Scholar 

  29. Cornie J, Cornie S, Zhang S (2005) Spray deposition apparatus and methods for metal matrix composites. US Patent US20060086434A1, 27 Apr 2006

    Google Scholar 

  30. Mitrică D, Moldovan P (2012) In-situ synthesis of Al-Si/SiCp composites by reactive gas injection method. UPB Sci Bull, Ser B 74:185–194

    Google Scholar 

  31. Li S, Sun B, Imai H, Kondoh K (2013) Powder metallurgy Ti–TiC metal matrix composites prepared by in-situ reactive processing of Ti-VGCFs system. Carbon 61:216–228

    Article  Google Scholar 

  32. Neubauer E, Kitzmantel M, Hulman M, Angerer P (2010) Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes. Compos Sci Technol 70:2228–2236

    Article  Google Scholar 

  33. Kondoh K, Threrujirapapong T, Imai H, Umeda J, Fugetsu B (2009) Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes. Compos Sci Technol 69:1077–1081

    Article  Google Scholar 

  34. Muratoğlu M, Yilmaz O, Aksoy M (2006) Investigation on diffusion bonding characteristics of aluminum metal matrix composites (Al/SiCp) with pure aluminum for different heat treatments. J Mater Process Technol 178:211–217

    Article  Google Scholar 

  35. Zhang X-P, Ye L, Mai Y-W, Quan G-F, Wei W (1999) Investigation on diffusion bonding characteristics of SiC particulate reinforced aluminium metal matrix composites (Al/SiC p-MMC). Compos Part A: Appl Sci 30:1415–1421

    Article  Google Scholar 

  36. Matula G (2009) Study on steel matrix composites with (Ti, Al) N gradient PVD coatings. J Achiev Mater Manuf Eng 34:79–86

    Google Scholar 

  37. Li S, Sun B, Imai H, Mimoto T, Kondoh K (2013) Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite. Compos Part A: Appl Sci 48:57–66

    Article  Google Scholar 

  38. Poovazhagan L, Kalaichelvan K, Rajadurai A, Senthilvelan V (2013) Characterization of hybrid silicon carbide and boron carbide nanoparticles-reinforced aluminum alloy composites. Procedia Eng 64:681–689

    Article  Google Scholar 

  39. Ataollahi Oshkour A, Pramanik S, Shirazi SFS, Mehrali M, Yau Y-H, Abu Osman NA (2014) A comparison in mechanical properties of cermets of calcium silicate with Ti-55Ni and Ti-6Al-4 V alloys for hard tissues replacement. Scientific World Journal. doi:10.1155/2014/616804

    Google Scholar 

  40. Mammoli A, Bush M (1995) Effects of reinforcement geometry on the elastic and plastic behaviour of metal matrix composites. Acta Metallurg Mater 43:3743–3754

    Article  Google Scholar 

  41. Babout L, Brechet Y, Maire E, Fougeres R (2004) On the competition between particle fracture and particle decohesion in metal matrix composites. Acta Mater 52:4517–4525

    Article  Google Scholar 

  42. McLelland A, Atkinson H, Anderson P (1999) Thixoforming of a novel layered metal matrix composite. Mater Sci Technol Ser 15:939–945

    Article  Google Scholar 

  43. Qian L, Kobayashi T, Toda H, Goda T, Wang Z-g (2002) Fracture toughness of a 6061Al matrix composite reinforced with fine SiC particles. Mater Trans 43:2838–2842

    Article  Google Scholar 

  44. ASTM E399-90 (1997) Standard test method for plane-strain fracture toughness of metallic materials. Annual Book of Standards, ASTM International, West Conshohocken

    Google Scholar 

  45. Ochiai S (1993) Mechanical properties of metallic composites. CRC Press, USA

    Google Scholar 

  46. Elango G, Raghunath BK (2013) Tribological behavior of hybrid (LM25Al + SiC+ TiO2) metal matrix composites. Procedia Eng 64:671–680

    Article  Google Scholar 

  47. Kundu S, Roy B, Mishra AK (2013) Study of dry sliding wear behavior of aluminium/SiC/Al2O3/graphite hybrid metal matrix composite using taguchi technique. Int J Sci Res Publ 3:1–8

    Google Scholar 

  48. Sreenivasan A, Paul Vizhian S, Shivakumar N, Muniraju M, Raguraman M (2011) A study of microstructure and wear behaviour of TiB2/Al metal matrix composites. Lat Am J Solids Struct 8:1–8

    Article  Google Scholar 

  49. Burr A, Yang J, Levi C, Leckie F (1995) The strength of metal-matrix composite joints. Acta Metallurg Mater 43:3361–3373

    Article  Google Scholar 

  50. Weber L, Dorn J, Mortensen A (2003) On the electrical conductivity of metal matrix composites containing high volume fractions of non-conducting inclusions. Acta Mater 51:3199–3211

    Article  Google Scholar 

  51. Paul B (1959) Prediction of elastic constants of multi-phase materials. In: Technical report no. 3. Brown University. Available via. http://www.osti.gov/scitech/biblio/4273941

  52. Hull AW, Burger E (1934) Glass‐to‐metal seals. J Appl Phys 5:384–405

    Google Scholar 

  53. Chawla KK, Metzger M (1972) Initial dislocation distributions in tungsten fibre-copper composites. J Mater Sci 7:34–39

    Article  Google Scholar 

  54. Scherer GW (1992) Relaxation in glass and composites. Krieger Publishing Company, Florida

    Google Scholar 

  55. Dvorak GJ (1991) Inelastic deformation of composite materials. Springer, New York

    Book  Google Scholar 

  56. Hsueh CH, Becher PF, Angelini P (1988) Effects of interfacial films on thermal stresses in whisker‐reinforced ceramics. J Am Ceram Soc 71:929–933

    Article  Google Scholar 

  57. Surappa MK (1997) Microstructure evolution during solidification of DRMMCs (discontinuously reinforced metal matrix composites): state of art. J Mater Process Technol 63:325–333

    Article  Google Scholar 

  58. Garfinkel GA, Myers DC, Gianaris NJ, Hashmi SAA (2003) Vented disc brake rotor. US Patent 6,536,564

    Google Scholar 

  59. Gui M, Kang S, Euh K (2004) Al-SiC powder preparation for electronic packaging aluminum composites by plasma spray processing. J Therm Spray Technol 13:214–222

    Article  Google Scholar 

  60. Lee HS, Jeon KY, Kim HY, Hong SH (2000) Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications. J Mater Sci 35:6231–6236

    Article  Google Scholar 

  61. Kida M, Weber L, Monachon C, Mortensen A (2011) Thermal conductivity and interfacial conductance of AlN particle reinforced metal matrix composites. J Appl Phys 109:064907

    Article  Google Scholar 

  62. Froes F (1997) Is the use of advanced materials in sports equipment unethical? J Mater 49:15–19

    Google Scholar 

  63. Kutz M, Adrezin RS, Barr RE, Batich C, Bellamkonda RV, Brammer AJ, Buchanan TS, Cook AM, Currie JM, Dolan AM (2003) Standard handbook of biomedical engineering and design. McGraw-Hill, New York

    Google Scholar 

  64. Tanigawa H, Asoh H, Ohno T, Kubota M, Ono S (2013) Electrochemical corrosion and bioactivity of titanium–hydroxyapatite composites prepared by spark plasma sintering. Corros Sci 70:212–220

    Article  Google Scholar 

  65. Geetha M, Singh A, Asokamani R, Gogia A (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants-a review. Prog Mater Sci 54:397–425

    Article  Google Scholar 

  66. Ning C, Zhou Y (2008) Correlations between the in vitro and in vivo bioactivity of the Ti/HA composites fabricated by a powder metallurgy method. Acta Biomater 4:1944–1952

    Article  Google Scholar 

  67. Fei S, Jie L, Bin F (2011) Corrosion behavior of extrusion-drawn pure Mg wire immersed in simulative body fluid. Trans Nonferr Metal Soc 21:258–261

    Article  Google Scholar 

  68. Pramanik S, Agarwal AK, Rai K (2005) Chronology of total hip joint replacement and materials development. Trends Biomater Artif Organs 19:15–26

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support provided by the Department of Science and Technology, India, for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal K. Kar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pramanik, S., Cherusseri, J., Baban, N.S., Sowntharya, L., Kar, K.K. (2017). Metal Matrix Composites: Theory, Techniques, and Applications. In: Kar, K. (eds) Composite Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49514-8_11

Download citation

Publish with us

Policies and ethics