Skip to main content
Log in

Preparation and characterization of small intestine submucosa powder impregnated poly(L-lactide) scaffolds: the application for tissue engineered bone and cartilage

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In order to endow with new bioactive functionality from small intestine submucosa (SIS) powder as natural source to poly(L-lactide) (PLA) and poly(lactide-co-glycolide) (PLGA) synthetic biodegradable polymer, porous SIS/PLA and SIS/PLGA as natural/synthetic composite scaffolds were prepared by means of the solvent casting/salt leaching methods for the possibility of the application of tissue engineered bone and cartilage. A uniform distribution of good interconnected pores from the surface to core region was observed the pore size of 40≈500 μm independent with SIS amount using the solvent casting/salt leaching method. Porosities, specific pore areas as well as pore size distribution also were almost same. After the fabrication of SIS/PLA hybrid scaffolds, the wetting properties was greatly enhanced resulting in more uniform cell seeding and distribution. Five groups as PGA nonwoven mesh without glutaraldehyde (GA) treatment, PLA scaffold without or with GA treatment, and SIS/PLA (Code No. 3;1∶12 of salt content, 0.4∶1 of SIS content, and 144 μm of median pore size) without or with GA treatment were implanted into the back of nude mouse to observe the effect of SIS on the induction of cells proliferation by hematoxylin and eosin, and von Kossa staining for 8 weeks. It was observed that the effect of SIS/PLA scaffolds with GA treatment on bone induction are stronger than PLA scaffolds, that is to say, in the order of PLA/SIS scaffolds with GA treatment > PLA/SIS scaffolds without GA treatment > PGA nonwoven > PLA scaffolds only with GA treatment = PLA scaffolds only without GA treatment for the osteoinduction activity. The possible explanations are (1) many kinds of secreted, circulating, and extracellular matrix-bound growth factors from SIS to significantly affect critical processes of tissue development and differentiation, (2) the exposure of SIS to GA resulted in significantly calcification, and (3) peri-implant fibrosis due to covalent bonding between collagen molecule by crosslinking reaction. In conclusion, it seems that SIS plays an important role for bone induction in SIS/PLA scaffolds for the application of tissue engineering area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Khang and H. B. Lee, inMethods of Tissue Engineering, A. Atala and R. Lanza, Eds., Academic Press, New York, 2001, Section II, Chapter 67, pp 771–780.

    Google Scholar 

  2. J. O. Hollinger and J. P. Schmitz,J. Oral Maxillofac. Surg.,45, 594 (1987).

    Article  CAS  Google Scholar 

  3. D. F. Williams and E. Mort,J. Bioeng.,1, 231 (1997).

    Google Scholar 

  4. O. Bostman,J. Bone Joint Surg.,73-A(1), 148 (1991).

    Google Scholar 

  5. C. M. Agrawal, P. E. Gabriele, G. Niederauer, and K. A. Athanasiou,Tissue Engineering,1, 241 (1995).

    Article  CAS  Google Scholar 

  6. L. G. Cima, D. E. Ingber, J. P. Vacanti, and R. Langer,Biotech. Bioeng.,38, 145 (1991).

    Article  CAS  Google Scholar 

  7. A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacanti, and R. Langer,Biomaterials,14, 323 (1993).

    Article  CAS  Google Scholar 

  8. H. L. Wald, G. Sarakinos, M. D. Lyman, A. G. Mikos, J. P. Vacanti, and R. Langer,Biomaterials,14, 270 (1993).

    Article  CAS  Google Scholar 

  9. A. G. Mikos, Y. Bao, L. G. Cima, D. E. Ingber, J. P. Vacanti, and R. Langer,J. Biomed. Mater. Res.,27, 183 (1993).

    Article  CAS  Google Scholar 

  10. G. G. Giodano, R. C. Thomson, S. L. Ishaug, A. G. Mikos, S. Cumber, C. A. Garcia, and D. Lahiri-Munir,J. Biomed. Mater. Res.,34, 87 (1997).

    Article  Google Scholar 

  11. D. A. Grande, C. Halberstadt, G. Naughton, R. Schwartz, and R. Manji,J. Biomed. Mater. Res.,34, 211 (1997).

    Article  CAS  Google Scholar 

  12. H. T. Wang, H. Palmer, R. J. Linhardt, D. R. Flanagan, and E. Schmitt,Biomaterials,11, 679 (1990).

    Article  CAS  Google Scholar 

  13. A. Carrio, G. Schwach, J. Coudane, and M. Vert,J. Control. Release,37, 1139 (1999).

    Google Scholar 

  14. C. Schmidt, R. Wenz, B. Nies, and F. Moll,J. Control. Release,37, 83 (1995).

    Article  CAS  Google Scholar 

  15. J. C. Cho, G. Khang, J. M. Rhee, Y. S. Kim, J. S. Lee, and H. B. Lee,Korea Polym. J.,7, 79 (1999).

    CAS  Google Scholar 

  16. G. Khang, J. C. Cho, J. W. Lee, J. M. Rhee, and H. B. Lee,Bio-Med. Mater. Eng.,9, 49 (1999).

    CAS  Google Scholar 

  17. G. Khang, H. B. Lee, and J. B. Park,Bio-Med. Mater. Eng.,5, 245 (1995).

    CAS  Google Scholar 

  18. G. Khang, H. B. Lee, and J. B. Park,Bio-Med. Mater. Eng.,5, 278 (1995).

    Google Scholar 

  19. G. Khang, B. J. Jeong, H. B. Lee, and J. B. Park,Bio-Med. Mater. Eng.,5, 259 (1995).

    CAS  Google Scholar 

  20. G. Khang, J. H. Jeon, J. W. Lee, S. C. Cho, and H. B. Lee,Bio-Med. Mater. Eng.,7, 357 (1997).

    CAS  Google Scholar 

  21. G. Khang, J. H. Jeon, J. C. Cho, J. M. Rhee, and H. B. Lee,Polymer (Korea),23, 861 (1999).

    CAS  Google Scholar 

  22. G. Khang, S. J. Lee, J. H. Jeon, J. H. Lee, Y. M. Lee, and H. B. Lee,Polymer(Korea),24, 877 (2000).

    Google Scholar 

  23. G. Khang, J. H. Lee, I. Lee, J. M. Rhee, and H. B. Lee,Korea Polym. J.,8, 276 (2000).

    Google Scholar 

  24. G. Khang, M. K. Choi, J. M. Rhee, S. J. Lee, H. B. Lee, Y. Iwasaki, N. Nakabayashi, and K. Ishihara,Korea Polym. J.,9, 107 (2001).

    CAS  Google Scholar 

  25. G. Khang, J. M. Rhee, I. Lee, and H. B. Lee,Polym. Sci. Tech.,12, 239 (2001).

    CAS  Google Scholar 

  26. S. L. Voytic-Harvin, A. O. Brightman, M. R. Krine, B. Waisner, and S. F. Badylak,J. Cell. Biochem.,67, 478 (1997).

    Article  Google Scholar 

  27. K. M. Clark, G. C. Lantz, S. K. Salibury, S. F. Badylak, M. C. Hiles, and S. L. Voytik,J. Surg. Res.,60, 107 (1996).

    Article  Google Scholar 

  28. M. C. Hiles, S. F. Badylak, G. C. Lantz, K. Kokini, L. A. Geddes, and R. J. Morff,J. Biomed. Mater. Res.,29, 883 (1995).

    Article  CAS  Google Scholar 

  29. T. J. Owen, G. C. Lantz, M. C. Hiles, J. V. Vleet, B. R. Martin, and L. A. Geddes,J. Surg. Res.,71, 179 (1997).

    Article  CAS  Google Scholar 

  30. B. P. Kropp, J. K. Ludlow, D. Spicer, M. K. Rippy, S. F. Badylak, M. C. Adams, M. A. Keating, R. C. Rink, R. Birhle, and K. B. Thor,Urology,52, 138 (1998)

    Article  CAS  Google Scholar 

  31. M. C. Bobotin-Johnson, P. E. Swanson, D. C. Johnson, R. B. Schuessler, and J. L. Cox,J. Thor. Cardiovasc. Surg.,116, 805 (1998).

    Article  Google Scholar 

  32. A. Sugitani, J. C. Reynolds, M. Tsunboi, and S. Todo,Surgery,123, 25 (1998).

    Article  CAS  Google Scholar 

  33. B. P. Kropp,World J. Urol.,16, 262 (1998).

    Article  CAS  Google Scholar 

  34. M. S. Sacks and D. C. Gloeckner,J. Biomed. Mater. Res.,46, 1 (1999).

    Article  CAS  Google Scholar 

  35. L. E. Freed, J. C. Marquis, A. Nohira, J. Emmanual, A. G. Mikos, and R. Langer,J. Biomed. Mater. Res.,27, 11 (1993).

    Article  CAS  Google Scholar 

  36. J. H. Aubertand S. Hulbert,Polymer,26, 2047 (1985).

    Article  CAS  Google Scholar 

  37. S. Gogolewski and A. J. Pennings,Makromol. Chem., Rapid Commum.,4, 675 (1983).

    Article  CAS  Google Scholar 

  38. H. L. Ritter and L. C. Drake,Ind. Eng. Chem.,17, 782 (1945).

    CAS  Google Scholar 

  39. A. G. Mikos, A. J. Thorsen, L. A. Czerwonka, Y. Bao, R. Langer, D. N. Winslow, and J. P. Vacanti,Polymer,35, 1068 (1994).

    Article  CAS  Google Scholar 

  40. G. Khang, C. S. Park. J. M. Rhee, S. J. Lee, Y. M. Lee, I. Lee, M. G. Choi, and H. B. Lee,Korea Polym. J.,9, 267 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khang, G., Rhee, J.M., Shin, P. et al. Preparation and characterization of small intestine submucosa powder impregnated poly(L-lactide) scaffolds: the application for tissue engineered bone and cartilage. Macromol. Res. 10, 158–167 (2002). https://doi.org/10.1007/BF03218266

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218266

Keywords

Navigation