Skip to main content

Advertisement

Log in

A Novel Approach to Utilize Icariin as Icariin-Derived ECM on Small Intestinal Submucosa Scaffold for Bone Repair

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Icariin (Ic) has been demonstrated as a potent osteoinductive compound for bone tissue engineering. However, toxic side effects of the drug and poor biocompatibility of drug delivery systems (DDSs) still limit its application for bone repair in the clinic. To overcome these disadvantages and utilize the osteoinductivity of Ic, we developed a novel method to utilize Ic as an Ic-derived osteoinductive extracellular matrix (ECM) on small intestinal submucosa (SIS) (Ic-ECM-SIS). The generated Ic-ECM-SIS scaffolds, as a natural construct, exhibited much better biocompatibility (including cell adhesion, cell survival and cell proliferation) than Ic-SIS scaffolds generated by traditional DDSs. Meanwhile, osteogenic differentiation was promoted by Ic-ECM-SIS with higher expression of alkaline phosphatase, bone sialoprotein and osteocalcin than ECM-SIS, which was same as Ic-SIS. BMP-4 expression was further increased in the cells on Ic-ECM-SIS compared to that on Ic-SIS. A mouse calvarial defect model was introduced to evaluate the function of Ic-ECM-SIS on bone regeneration in vivo. The bone regeneration was enhanced in the defects implanted with Ic-ECM-SIS, with a higher new bone formation ratio (BV/TV) than the defects implanted with ECM-SIS or Ic-SIS. Angiogenesis was also promoted by Ic-ECM-SIS implantation when compared with ECM-SIS or Ic-SIS. Thus, this work proposes a novel method for applying a drug as a drug-derived ECM-modified scaffold for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Andree, B., A. Bar, A. Haverich, and A. Hilfiker. Small intestinal submucosa segments as matrix for tissue engineering: review. Tissue Eng. B 19(4):279–291, 2013.

    Article  CAS  Google Scholar 

  2. Caione, P., R. Boldrini, A. Salerno, and S. G. Nappo. Bladder augmentation using acellular collagen biomatrix: a pilot experience in exstrophic patients. Pediatr. Surg. Int. 28(4):421–428, 2012.

    Article  PubMed  Google Scholar 

  3. Chai, Y. C., J. Bolander, I. Papantoniou, J. Patterson, J. Vleugels, J. Schrooten, and F. P. Luyten. Harnessing the osteogenicity of in vitro stem cell-derived mineralized extracellular matrix as 3D biotemplate to guide bone regeneration. Tissue Eng. A 2017. doi:10.1089/ten.tea.2016.0432.

    Google Scholar 

  4. Chen, M., J. Wu, Q. Luo, S. Mo, Y. Lyu, Y. Wei, and J. Dong. The anticancer properties of Herba Epimedii and its main bioactive components icariin and icariside II. Nutrients 2016. doi:10.3390/nu8090563.

    Google Scholar 

  5. Choi, J. S., S. Lee, Y. da Kim, Y. M. Kim, M. S. Kim, and J. Y. Lim. Functional remodeling after vocal fold injury by small intestinal submucosa gel containing hepatocyte growth factor. Biomaterials 40:98–106, 2015.

    Article  CAS  PubMed  Google Scholar 

  6. Da, L., M. Gong, A. Chen, Y. Zhang, Y. Huang, Z. Guo, S. Li, J. Li-Ling, L. Zhang, and H. Xie. Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering. Acta Biomater. 59:45–57, 2017.

    Article  CAS  PubMed  Google Scholar 

  7. Datta, N., H. L. Holtorf, V. I. Sikavitsas, J. A. Jansen, and A. G. Mikos. Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials 26(9):971–977, 2005.

    Article  CAS  PubMed  Google Scholar 

  8. Datta, N., Q. P. Pham, U. Sharma, V. I. Sikavitsas, J. A. Jansen, and A. G. Mikos. In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proc. Natl Acad. Sci. USA 103(8):2488–2493, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Decaris, M. L., and J. K. Leach. Design of experiments approach to engineer cell-secreted matrices for directing osteogenic differentiation. Ann. Biomed. Eng. 39(4):1174–1185, 2011.

    Article  PubMed  Google Scholar 

  10. Hodde, J. P., S. F. Badylak, A. O. Brightman, and S. L. Voytik-Harbin. Glycosaminoglycan content of small intestinal submucosa: a bioscaffold for tissue replacement. Tissue Eng. 2(3):209–217, 1996.

    Article  CAS  PubMed  Google Scholar 

  11. Hsieh, T. P., S. Y. Sheu, J. S. Sun, and M. H. Chen. Icariin inhibits osteoclast differentiation and bone resorption by suppression of MAPKs/NF-kappaB regulated HIF-1alpha and PGE(2) synthesis. Phytomedicine 18(2–3):176–185, 2011.

    Article  CAS  PubMed  Google Scholar 

  12. Hu, Y., K. Liu, M. Yan, Y. Zhang, Y. Wang, and L. Ren. Icariin inhibits oxidized low-density lipoprotein-induced proliferation of vascular smooth muscle cells by suppressing activation of extracellular signal-regulated kinase 1/2 and expression of proliferating cell nuclear antigen. Mol. Med. Rep. 13(3):2899–2903, 2016.

    Article  CAS  PubMed  Google Scholar 

  13. Huang, J. G., L. Pang, Z. R. Chen, and X. P. Tan. Dual-delivery of vancomycin and icariin from an injectable calcium phosphate cement-release system for controlling infection and improving bone healing. Mol. Med. Rep. 8(4):1221–1227, 2013.

    Article  CAS  PubMed  Google Scholar 

  14. Kim, K. S., J. Y. Lee, Y. M. Kang, E. S. Kim, G. H. Kim, S. D. Rhee, H. G. Cheon, J. H. Kim, B. H. Min, H. B. Lee, and M. S. Kim. Small intestine submucosa sponge for in vivo support of tissue-engineered bone formation in the presence of rat bone marrow stem cells. Biomaterials 31(6):1104–1113, 2010.

    Article  CAS  PubMed  Google Scholar 

  15. Kim, I. G., M. P. Hwang, P. Du, J. Ko, C. W. Ha, S. H. Do, and K. Park. Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing. Biomaterials 50:75–86, 2015.

    Article  CAS  PubMed  Google Scholar 

  16. Lau, T. T., L. Q. Lee, B. N. Vo, K. Su, and D. A. Wang. Inducing ossification in an engineered 3D scaffold-free living cartilage template. Biomaterials 33(33):8406–8417, 2012.

    Article  CAS  PubMed  Google Scholar 

  17. Lee, S. J., I. W. Lee, Y. M. Lee, H. B. Lee, and G. Khang. Macroporous biodegradable natural/synthetic hybrid scaffolds as small intestine submucosa impregnated poly(d, l-lactide-co-glycolide) for tissue-engineered bone. J. Biomater. Sci. Polym. Ed. 15(8):1003–1017, 2004.

    Article  CAS  PubMed  Google Scholar 

  18. Li, C., Q. Li, Q. Mei, and T. Lu. Pharmacological effects and pharmacokinetic properties of icariin, the major bioactive component in Herba Epimedii. Life Sci. 126:57–68, 2015.

    Article  CAS  PubMed  Google Scholar 

  19. Li, M., Q. Gu, M. Chen, C. Zhang, S. Chen, and J. Zhao. Controlled delivery of icariin on small intestine submucosa for bone tissue engineering. Mater. Sci. Eng. C 71:260–267, 2017.

    Article  CAS  Google Scholar 

  20. Li, M., C. Zhang, M. Cheng, Q. Gu, and J. Zhao. Small intestinal submucosa: a potential osteoconductive and osteoinductive biomaterial for bone tissue engineering. Mater. Sci. Eng. C 75:149–156, 2017.

    Article  CAS  Google Scholar 

  21. Liu, Y., W. Ma, B. Liu, Y. Wang, J. Chu, G. Xiong, L. Shen, C. Long, T. Lin, D. He, D. Butnaru, L. Alexey, Y. Zhang, D. Zhang, and G. Wei. Urethral reconstruction with autologous urine-derived stem cells seeded in three-dimensional porous small intestinal submucosa in a rabbit model. Stem Cell Res. Ther. 8(1):63, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ma, H. P., L. G. Ming, B. F. Ge, Y. K. Zhai, P. Song, C. J. Xian, and K. M. Chen. Icariin is more potent than genistein in promoting osteoblast differentiation and mineralization in vitro. J. Cell. Biochem. 112(3):916–923, 2011.

    Article  CAS  PubMed  Google Scholar 

  23. Mansour, A., M. A. Mezour, Z. Badran, and F. Tamimi. Extracellular matrices for bone regeneration: a literature review. Tissue Eng. A 2017. doi:10.1089/ten.TEA.2017.0026.

    Google Scholar 

  24. McPherson, T. B., and S. F. Badylak. Characterization of fibronectin derived from porcine small intestinal submucosa. Tissue Eng. 4:75–83, 1998.

    Article  CAS  Google Scholar 

  25. Meng, F. H., Y. B. Li, Z. L. Xiong, Z. M. Jiang, and F. M. Li. Osteoblastic proliferative activity of Epimedium brevicornum Maxim. Phytomedicine 12(3):189–193, 2005.

    Article  CAS  PubMed  Google Scholar 

  26. Moore, D. C., H. A. Pedrozo, J. J. Crisco, III, and M. G. Ehrlich. Preformed grafts of porcine small intestine submucosa (SIS) for bridging segmental bone defects. J. Biomed. Mater. Res. A 69(2):259–266, 2004.

    Article  PubMed  Google Scholar 

  27. Mostow, E. N., G. D. Haraway, M. Dalsing, J. P. Hodde, and D. King. Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J. Vasc. Surg. 41(5):837–843, 2005.

    Article  PubMed  Google Scholar 

  28. Nian, H., M. H. Ma, S. S. Nian, and L. L. Xu. Antiosteoporotic activity of icariin in ovariectomized rats. Phytomedicine 16(4):320–326, 2009.

    Article  CAS  PubMed  Google Scholar 

  29. Noh, Y. K., P. Du, I. G. Kim, J. Ko, S. W. Kim, and K. Park. Polymer mesh scaffold combined with cell-derived ECM for osteogenesis of human mesenchymal stem cells. Biomater. Res. 20:6, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Oelschlager, B. K., C. A. Pellegrini, J. Hunter, N. Soper, M. Brunt, B. Sheppard, B. Jobe, N. Polissar, L. Mitsumori, J. Nelson, and L. Swanstrom. Biologic prosthesis reduces recurrence after laparoscopic paraesophageal hernia repair: a multicenter, prospective, randomized trial. Ann. Surg. 244(4):481–490, 2006.

    PubMed  PubMed Central  Google Scholar 

  31. Pati, F., T. H. Song, G. Rijal, J. Jang, S. W. Kim, and D. W. Cho. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials 37:230–241, 2015.

    Article  CAS  PubMed  Google Scholar 

  32. Shao, H., J. Shen, M. Wang, J. Cui, Y. Wang, S. Zhu, W. Zhang, H. Yang, Y. Xu, and D. Geng. Icariin protects against titanium particle-induced osteolysis and inflammatory response in a mouse calvarial model. Biomaterials 60:92–99, 2015.

    Article  CAS  PubMed  Google Scholar 

  33. Song, L., J. Zhao, X. Zhang, H. Li, and Y. Zhou. Icariin induces osteoblast proliferation, differentiation and mineralization through estrogen receptor-mediated ERK and JNK signal activation. Eur. J. Pharmacol. 714(1–3):15–22, 2013.

    Article  CAS  PubMed  Google Scholar 

  34. Subbiah, R., M. P. Hwang, P. Du, M. Suhaeri, J. H. Hwang, J. H. Hong, and K. Park. Tunable crosslinked cell-derived extracellular matrix guides cell fate. Macromol. Biosci. 16(11):1723–1734, 2016.

    Article  CAS  PubMed  Google Scholar 

  35. Suckow, M. A., S. L. Voytik-Harbin, L. A. Terril, and S. F. Badylak. Enhanced bone regeneration using porcine small intestinal submucosa. J. Investig. Surg. 12(5):277–287, 1999.

    Article  CAS  Google Scholar 

  36. Sun, T., S. Yao, M. Liu, Y. Yang, Y. Ji, W. Cui, Y. Qu, and X. D. Guo. Composite scaffolds of mineralized natural extracellular matrix on true bone ceramic induce bone regeneration via Smad1/5/8 and ERK1/2 pathways. Tissue Eng. A 2017. doi:10.1089/ten.TEA.2017.0179.

    Google Scholar 

  37. Sun, Y., X. H. Sun, W. J. Fan, X. M. Jiang, and A. W. Li. Icariin induces S-phase arrest and apoptosis in medulloblastoma cells. Cell. Mol. Biol. (Noisy-le-grand) 62(4):123–129, 2016.

    CAS  Google Scholar 

  38. Tan, H. L., K. G. Chan, P. Pusparajah, S. Saokaew, A. Duangjai, L. H. Lee, and B. H. Goh. Anti-cancer properties of the naturally occurring aphrodisiacs: icariin and its derivatives. Front. Pharmacol. 7:191, 2016.

    PubMed  PubMed Central  Google Scholar 

  39. Thibault, R. A., L. Scott Baggett, A. G. Mikos, and F. K. Kasper. Osteogenic differentiation of mesenchymal stem cells on pregenerated extracellular matrix scaffolds in the absence of osteogenic cell culture supplements. Tissue Eng. A 16(2):431–440, 2010.

    Article  CAS  Google Scholar 

  40. Thibault, R. A., A. G. Mikos, and F. K. Kasper. Scaffold/extracellular matrix hybrid constructs for bone-tissue engineering. Adv. Healthc. Mater. 2(1):13–24, 2013.

    Article  CAS  PubMed  Google Scholar 

  41. Tour, G., M. Wendel, and I. Tcacencu. Cell-derived matrix enhances osteogenic properties of hydroxyapatite. Tissue Eng. A 17(1–2):127–137, 2011.

    Article  CAS  Google Scholar 

  42. Voytik-Harbin, S. L., A. O. Brightman, M. R. Kraine, B. Waisner, and S. F. Badylak. Identification of extractable growth factors from small intestinal submucosa. J. Cell. Biochem. 67(4):478–491, 1997.

    Article  CAS  PubMed  Google Scholar 

  43. Wang, W., X. Zhang, N. N. Chao, T. W. Qin, W. Ding, Y. Zhang, J. W. Sang, and J. C. Luo. Preparation and characterization of pro-angiogenic gel derived from small intestinal submucosa. Acta biomater. 29:135–148, 2016.

    Article  CAS  PubMed  Google Scholar 

  44. Wang, D., X. Ding, W. Xue, J. Zheng, X. Tian, Y. Li, X. Wang, H. Song, H. Liu, and X. Luo. A new scaffold containing small intestinal submucosa and mesenchymal stem cells improves pancreatic islet function and survival in vitro and in vivo. Int. J. Mol. Med. 39(1):167–173, 2017.

    Article  PubMed  Google Scholar 

  45. Xia, L., Y. Li, Z. Zhou, Y. Dai, and H. Liu. Icariin delivery porous PHBV scaffolds for promoting osteoblast expansion in vitro. Mater. Sci. Eng. C 33(6):3545–3552, 2013.

    Article  CAS  Google Scholar 

  46. Xu, C. Q., B. J. Liu, J. F. Wu, Y. C. Xu, X. H. Duan, Y. X. Cao, and J. C. Dong. Icariin attenuates LPS-induced acute inflammatory responses: involvement of PI3K/Akt and NF-kappaB signaling pathway. Eur. J. Pharmacol. 642(1–3):146–153, 2010.

    Article  CAS  PubMed  Google Scholar 

  47. Xu, Q., R. M. Shanti, Q. Zhang, S. B. Cannady, B. W. O’Malley, Jr., and A. D. Le. A gingiva-derived mesenchymal stem cell-laden porcine small intestinal submucosa extracellular matrix construct promotes myomucosal regeneration of the tongue. Tissue Eng. A 23(7–8):301–312, 2017.

    Article  CAS  Google Scholar 

  48. Yang, B., L. Zhou, Z. Sun, R. Yang, Y. Chen, and Y. Dai. In vitro evaluation of the bioactive factors preserved in porcine small intestinal submucosa through cellular biological approaches. J. Biomed. Mater. Res. A 93(3):1100–1109, 2010.

    CAS  PubMed  Google Scholar 

  49. Zhang, G., L. Qin, and Y. Shi. Epimedium-derived phytoestrogen flavonoids exert beneficial effect on preventing bone loss in late postmenopausal women: a 24-month randomized, double-blind and placebo-controlled trial. J. Bone Miner. Res. 22(7):1072–1079, 2007.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, X., T. Liu, Y. Huang, D. Wismeijer, and Y. Liu. Icariin: does it have an osteoinductive potential for bone tissue engineering? Phytother. Res. 28(4):498–509, 2014.

    Article  CAS  PubMed  Google Scholar 

  51. Zhao, J., S. Ohba, M. Shinkai, U.-I. Chung, and T. Nagamune. Icariin induces osteogenic differentiation in vitro in a BMP- and Runx2-dependent manner. Biochem. Biophys. Res. Commun. 369(2):444–448, 2008.

    Article  CAS  PubMed  Google Scholar 

  52. Zhao, J., S. Ohba, Y. Komiyama, M. Shinkai, U.-I. Chung, and T. Nagamune. Icariin: a potential osteoinductive compound for bone tissue engineering. Tissue Eng. A 16(1):233–243, 2010.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Cook Biotech, Inc., for kindly providing lyophilized SIS scaffolds. This work was supported by the Applied Research Project on Nonprofit Technology of Zhejiang Province (No. 2017C33135), the Natural Science Foundation of Ningbo (Grant Nos. 2014A610238 and 2014A610220) and the K.C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyuan Zhao.

Ethics declarations

Conflicts of interest

The authors confirm that there are no known conflicts of interest associated with this publication.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhang, C., Zhong, Y. et al. A Novel Approach to Utilize Icariin as Icariin-Derived ECM on Small Intestinal Submucosa Scaffold for Bone Repair. Ann Biomed Eng 45, 2673–2682 (2017). https://doi.org/10.1007/s10439-017-1900-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1900-y

Keywords

Navigation