Skip to main content
Log in

Adjuvant arthritis-induced changes on ampicillin binding in serum and tissues under the influence of non-steroidal anti-inflammatory drugs in rats

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

Adjuvant arthritis, as a model for investigating rheumatoid arthritis (RA), is characterized by reduced plasma albumin levels and interferes with drug binding in the plasma and tissues (liver and bone). Ampicillin interacts with non-steroidal anti-inflammatory drugs (NSAIDs) due to the acidic pka.

The aim of this study was to investigate in vitro the concentrations of ampicillin in the serum, femur, mandible and liver proteins following the co-administration of ketoprofen, flurbiprofen, ibuprofen, oxyphenbutazone and ASA in adjuvant arthritis versus healthy control rats. Ampicillin binding was found to be reduced in the serum of arthritic rats, and ampicillin binding to serum proteins was also reduced under the influence of NSAIDs in the control animals. Differences in ampicillin binding were observed in the various tissues due to the effect of adjuvant arthritis as well as that due to the co-administration of NSAIDs.

In conclusion, this in vitro study may provide a plausible explanation for the ampicillin-NSAIDs interaction and such a finding may be of therapeutic significance in the treatment of painful arthritic disease such as RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mirshafiey A, Cuzzocrea S, Rehm B, Mazzon E, Saadat F, Sotoude M (2005): Treatment of experimental arthritis with M2000, a novel designed non-steroidal anti-inflammatory drug. Scand J Immunol 61(5):435–441.

    Article  CAS  PubMed  Google Scholar 

  2. Kvien TK (2004): Epidemiology and burden of illness of rheumatoid arthritis. Pharmacoeconomics 22(Suppl 2):1–12.

    PubMed  Google Scholar 

  3. Dorner T, Egerer K, Feist E, Burmester GR (2004): Rheumatoid factor revisited. Curr Opin Rheumatol 16(3):246–253.

    Article  CAS  PubMed  Google Scholar 

  4. Walker JS, Kasmerski L (1988): Diflunisal pharmacodynamics in experimental arthritis in rats. J Rheumatol 15(11): 1643–1647.

    CAS  PubMed  Google Scholar 

  5. Barre J, Houin G, Brunner F, Bree F, Tillement JP (1983): Disease-induced modifications of drug pharmacokinetics. Int J Clin Pharmacol Res 3(4):215–226.

    CAS  PubMed  Google Scholar 

  6. Yamasaki K, Rahman MH, Tsutsumi Y, Maruyama T, Ahmed S, Kragh-Hansen U, et al. (2999): Circular dichroism simulation shows a site-II-to-site-I displacement of human serum albumin-bound diclofenac by ibuprofen. AAPS Pharm Sci Tech 1(2):12.

    Article  Google Scholar 

  7. Verbeeck RK, Blackburn JL, Loewen GR (1983): Clinical pharmacokinetics of non-steroidal anti-inflammatory drugs. Clin Pharmacokinet 8(4):297–331.

    Article  CAS  PubMed  Google Scholar 

  8. McElnay JC, D’Arcy PF (1983): Protein binding displacement interactions and their clinical importance. Drugs 25(5):495–513.

    Article  CAS  PubMed  Google Scholar 

  9. Verbeeck RK (1990): Pharmacokinetic drug interactions with nonsteroidal anti-inflammatory drugs. Clin Pharmacokinet 19(1):44–66.

    Article  CAS  PubMed  Google Scholar 

  10. Mourouzis C., Saranteas, T, Tsamouris M, Tesseromatis C (2003): Morphological changes of parotid glands following adjuvant arthritis and ibuprofen treatment in rats. Int J Oral Maxillofac Surg 32(1):69–73.

    Article  CAS  PubMed  Google Scholar 

  11. Trichilis A Saranteas, T Potamianou A., Mourouzis C Tesseromatis C (2003): Quinolone levels in serum and maxillofacial tissues under ibuprofen co-administration following surgical trauma. J Musculoskelet Neuronal Interact 3(2):170–175.

    CAS  Google Scholar 

  12. Saranteas T, Mourouzis C, Dannis C, Alexopoulos C, Lolis E, Tesseromatis C (2004): Effect of various stress models on lidocaine pharmacokinetic properties in the mandible after masseter injection. J Oral Maxillofac Surg 62(7):858–862.

    Article  PubMed  Google Scholar 

  13. Craig WA, Welling PG (1977): Protein binding of antimicrobials: clinical pharmacokinetic and therapeutic implications. Clin Pharmacokinet 2(4):252–268.

    Article  CAS  PubMed  Google Scholar 

  14. Tesseromatis C, Trichilis A, Tsivos E, Messari J, Triantaphyllidis H, Varonos DD (2001): Does stress influence ampicillin concentration in serum and tissues? Eur J Drug Metab Pharmacokinet 26(3): 167–171.

    Article  CAS  PubMed  Google Scholar 

  15. Trichilis A, Tesserommatis C, Varonos D. (2000): Changes in serum levels of quinolones in rats under the influence of experimental trauma. Eur J Drug Metab Pharmacokinet 25(2):73–78.

    Article  CAS  PubMed  Google Scholar 

  16. Committee on Care and Use of Laboratory Animals (1985): Guides for the care and use of laboratory animals. Washington, DC: Institute of Laboratory Animals and Resources. National Research Council, p. 83.

  17. Tesseromatis C, Kurz H, Fichtl B (1987): Binding of non-steroid anti-inflammatory drugs and warfarin to liver tissue of rabbits in vitro. Eur J Drug Metab Pharmacokinet 12:161–167.

    Article  CAS  PubMed  Google Scholar 

  18. Bennet VJ, Broide LJ, Benner LE, Kirby NW (1966): Simplified accurate method for antibiotic assay of clinical specimens. Appl Microbiol 14:170–177.

    Google Scholar 

  19. Powis G (1974): A study of the interaction of tetracycline with human serum lipoproteins and albumin. J Pharm Pharmacol 26(2): 113–118.

    CAS  PubMed  Google Scholar 

  20. Craig WA, Kunin CM (1976): Significance of serum protein and tissue binding of antimicrobial agents. Annu Rev Med 27:287–300.

    Article  CAS  PubMed  Google Scholar 

  21. Kunin CM (1964): Enhancement of antimicrobial activity of penicillins and other antibiotics in human serum by competitive serum binding inhibitors. Proc Soc Exp Biol Med 117:69–73.

    CAS  PubMed  Google Scholar 

  22. Needs CJ, Brooks PM (1985): Clinical pharmacokinetics of the salicylates. Clin Pharmacokinet 10(2): 164–177.

    Article  CAS  PubMed  Google Scholar 

  23. Craig WA, Suh B (1978): Changes in protein binding during disease. Scand J Infect Dis Suppl(14):239–244.

    CAS  PubMed  Google Scholar 

  24. Agapitova IV, Iakovlev VP (1987): [Antibiotic pharmacokinetics in rats with an infected inflammation]. Antibiot Med Biotekhnol 32(7):508–511.

    CAS  PubMed  Google Scholar 

  25. Craig WA, Ebert SC (1989): Protein binding and its significance in antibacterial therapy. Infect Dis Clin North Am 3(3):407–414.

    CAS  PubMed  Google Scholar 

  26. Wise R (1986): The clinical relevance of protein binding and tissue concentrations in antimicrobial therapy. Clin Pharmacokinet 11(6):470–482.

    Article  CAS  PubMed  Google Scholar 

  27. Guirguis MS, Jamali F (2003): Disease-drug interaction: reduced response to propranolol despite increased concentration in the rat with inflammation. J Pharm Sci 92(5):1077–1084.

    Article  CAS  PubMed  Google Scholar 

  28. Weismeier K, Adam D, Heilmann HD, Koeppe P (1989): Penetration of amoxycillin/clavulanate into human bone. J Antimicrob Chemother 24(Suppl B):93–100.

    CAS  PubMed  Google Scholar 

  29. Iwamoto J, Yeh JK, Aloia JF (2000): Effect of deconditioning on cortical and cancellous bone growth in the exercise trained young rats. J Bone Miner Res 15(9):1842–1849.

    Article  CAS  PubMed  Google Scholar 

  30. Brooker DS (1988): Rheumatoid arthritis: otorhinolaryngological manifestations. Otolaryngol Clin North Am.

  31. Jiang G, Matsumoto H, Yahane J, Kuboyama N, Akimoto Y, Fujii A (2004): Prevention of trabecular bone loss in the mandible of ovariectomized rats. J Oral Sci 46:75–85.

    Article  PubMed  Google Scholar 

  32. Incavo SJ, Ronchetti PJ, Choi JH, Wu H, Kinzig M, Sorgel F (1994): Penetration of piperacillin-tazobactam into cancellous and cortical bone tissues. Antimicrob Agents Chemother 38(4):905–907.

    CAS  PubMed  Google Scholar 

  33. Djabarouti S, Boselli E, Allaouchiche B, Ba B, Nguyen AT, Gordien JB, et al. (2004): Determination of levofloxacin in plasma, bronchoalveolar lavage and bone tissues by high-performance liquid chromatography with ultraviolet detection using a fully automated extraction method. J Chromatogr B Anal Technol Biomed Life Sci 799(1):165–172.

    Article  CAS  Google Scholar 

  34. Tomoda K, Kitaoka M, Iyama K, Usuku G (1986): Endosteal new bone formation in the long bones of adjuvant treated rats. Pathol Res Pract 181(3):331–338.

    CAS  PubMed  Google Scholar 

  35. Hara T, Tanck E, Homminga J, Huiskes R (2002): The influence of microcomputed tomography threshold variations on the assessment of structural and mechanical trabecular bone properties. Bone 31 (1): 107–109.

    Article  CAS  PubMed  Google Scholar 

  36. Hand DR, Watkins JP, Honnas CM, Kemper D (2001): Osteomyelitis of the sustentaculum tall in horses: 10 cases (1992–1998). J Am Vet Med Assoc 219(3):341–345.

    Article  CAS  PubMed  Google Scholar 

  37. 37. Van den Hoven R, Hierweck B, Dobretsberger M, Ensink JM, Meijer LA (2003): Intramuscular dosing strategy for ampicillin sodium in horses, based on its distribution into tissue chambers before and after induction of inflammation. J Vet Pharmacol Ther 26(6):405–411.

    Article  PubMed  Google Scholar 

  38. Errecalde JO, Carmely D, Mariño EL, Mestorino N (2001): Pharmacokinetics of amoxycillin in normal horses and horses with experimental arthritis. J Vet Pharmacol Ther 24(1):1.

    Article  CAS  PubMed  Google Scholar 

  39. Goldstein R, Lavy E, Shem-Tov M, Glickman A, Bark H, Ziv G (1995): Pharmacokinetics of ampicillin administered intravenously and intraosseously to kittens. Res Vet Sci 59(2):186–187.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tigka, E., Daskala, I., Rallis, G. et al. Adjuvant arthritis-induced changes on ampicillin binding in serum and tissues under the influence of non-steroidal anti-inflammatory drugs in rats. European Journal of Drug Metabolism and Pharmacokinetics 30, 235–241 (2005). https://doi.org/10.1007/BF03190626

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03190626

Keywords

Navigation