Skip to main content
Log in

Changes in serum levels of quinolones in rats under the influence of experimental trauma

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

Administration of antibiotics is considered an important factor during, or after, operational procedures in the maxillofacial area, in order to avoid post-surgical complications. In the present study, the levels of quinolones in serum and tissues such as the parotid gland, the tongue and the bone of the jaws were estimated during traumatic injury in the oral cavity. For this purpose, two groups (A and B) of Wistar rats, consisting of 35 animals each were used. Group A (control) and group B (experimental) were divided in five subgroups (A1, A2, A3, A4, A5 and B1, B2, B3, B4, B5). In the experimental group, model traumatic injury was performed through the whole length of the cheek. Subjects received orally ciprofloxacin, pefloxacin, norfloxacin, ofloxacin and cinoxacin. The concentration of quinolones in serum and in most of the tissues was significantly higher, in the experimental groups than in controls. In addition, the FFA levels and the weight of adrenals (as indicators of stress) were higher in the trauma groups. Stress seemed to affect many pathophysiological mechanisms which are responsible for the alterations observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Driewer C.W., Bousquet W.F. (1965): Stress-induced interactions: evidence for rapid enzyme induction. Life Sci., 4, 1449–1454.

    Article  Google Scholar 

  2. Furner R.L., Stitzel R.E. (1968): Stress-induced alterations in microsomal drug metabolism in the adrenalectomised animal. Biochem. Pharmacol., 10, 121–127.

    Article  Google Scholar 

  3. Sfikakis A., Galanopoulou P., Konstandi M., Tsakayannis D. (1996). Stress through handling for vaginal screening, serotonin and ACTH response to ether. Pharm. Biochem. Behav., 53, 965–970.

    Article  CAS  Google Scholar 

  4. Birke, G., Carlsson L.A., Liljedahl S-O. (1965): Lipid metabolism and trauma. III. Plasma lipids and lipoproteins in burns. Acta Med. Scand., 178, 337–350.

    PubMed  CAS  Google Scholar 

  5. Elfstrom J., Johansson H., Lindgren S. (1978): The human metabolism of phenazone after hydrocortisone administration. Eur. J. Clin. Pharmacol., 13, 69–70.

    Article  PubMed  CAS  Google Scholar 

  6. Tsopanakis C., Tesserommatis C. (1991): Cold swimming stress: effects on serum lipids, proteins, lipoproteins and LCAT activity in male and female rats. Pharm. Biochem. Behav., 38, 813–816.

    Article  CAS  Google Scholar 

  7. Tesserommatis C., Tsopanakis C., Symeonoglou G., Loukissa M., Varonos D. (1996). How harmless is FFA enhancement? Eur. J. Drug Metab. Pharmacokinet., 21, 213–215.

    Article  PubMed  CAS  Google Scholar 

  8. Kinney J.M., Long C.L., Duke J.H. (1970): Carbohydrate and nitrogen metabolism after injury. In: Porter and Knight (eds). Energy Metabolism in Trauma. London: Churchill Livingstone, 103–126.

    Google Scholar 

  9. Thoren L. (1975): Metabolic response to injury. Surg. Annu., 7, 53–70.

    PubMed  CAS  Google Scholar 

  10. Johnston I.D.A., Welbourn R.B. (1970): Metabolic and endocrine response to trauma. Surg. Annu. 8, 91–101.

    Google Scholar 

  11. Lucas C.E. (1976): The renal response to acute injury and sepsis. Surg. Clin. North Am. 56, 953–975.

    PubMed  CAS  Google Scholar 

  12. Patton J.H., Reeves D.S. (1988): Fluoroquinolone antibiotics. Microbiology, pharmacokinetics and clinical use. Drugs, 36, 193–228.

    Article  Google Scholar 

  13. Bergan T. (1988): Pharmacokinetics of fluorinated quinolones. In: Andriole V.T. (ed) The Quinolones. Bayer: Academic Press, 119–154.

    Google Scholar 

  14. Bergan T. (1987): Pharmacokinetic properties of the cephalosporins. Drugs, 34 Suppl. 2, 89–104.

    Article  PubMed  CAS  Google Scholar 

  15. Bennet VJ., Brodie L.J., Benner L.E., Kirby N.W. (1966): Simplified accurate method to antibiotic of clinical specimens. Appl. Microbiol., 14, 170–177.

    Google Scholar 

  16. Omrani R.G., Furnkawa H., Sherwood I., Loeb J. (1983): [3H]-Dexamethazone binding by rat liver microsomes Effects of age, sex and adrenal status. Endocrinology, 112, 178–186.

    Article  PubMed  CAS  Google Scholar 

  17. Kant G.J., Bunnell B.N., Mougey E.H., Pennington L.L., Meyerhoff J.L. (1983). Effects of repeated stress on pituitary cyclic AMP, and plasma prolactin, corticosterone and growth hormone in male rats. Pharmacol. Biochem. Behav., 18, 967–971.

    Article  PubMed  CAS  Google Scholar 

  18. Pollack G.M., Browne J.L., Marton J., Haberer L.J. (1991): Chronic stress impairs oxidative and hepatic excretion of model xenobiotic substrates in the rat. Drug Metab. Dispos., 19, 130–134.

    PubMed  CAS  Google Scholar 

  19. Borga O., Piafsky K.M., Nilsen O.G. (1977): Plasma protein binding of basic drugs: I. Selective displacement from α1-acid glycoprotein by Tris (2-butoxyethyl) phosphate. Clin. Pharmacol. Ther., 22, 539–544

    PubMed  CAS  Google Scholar 

  20. Fremstad D., Bergerud K., Haffner J.F.W.et al. (1976): Increased protein binding of quinidine after surgery: a preliminary report. Eur. J. Clin. Pharmacol., 10, 441–446.

    Article  PubMed  CAS  Google Scholar 

  21. Soltys B.J., Hsia J.C. (1978): Steroid modulation of human serum albumin binding properties. A spin label study. J. Biol. Chem., 253, 4266–4269.

    PubMed  CAS  Google Scholar 

  22. Oie S., Torer T.N. (1979): Effect of altered plasma protein binding on apparent volume of distribution. J. Pharm. Sci., 68, 1203–1208.

    Article  PubMed  CAS  Google Scholar 

  23. Caffruny E.L. (1977): Renal tubular handling of drugs. Am. J. Med., 62, 491–502.

    Article  Google Scholar 

  24. Goodman and Gilman’s (1996): The Pharmacological Basis of Therapeutics, 9th edn. New York: McGraw-Hill Health Division, p. 746.

    Google Scholar 

  25. Speight T.M., Holford N.H.G. eds. (1997): Avery’s Drug Treatment, 4th edn. Auckland: Adis International, pp. 34–35

    Google Scholar 

  26. Upton R.A., Williams R.L., Buskin J.N., Jones R.M. (1982): Effects of probenecid on ketoprofen kinetics. Clin. Pharmacol. Ther., 31, 705–712.

    PubMed  CAS  Google Scholar 

  27. Konig E., Lemp A. (1966): Plasmavolumenanderungen durch alltaglich Belastungen bei Herzgesunden und Herzinsuffizienten. Klin. Wochenschr., 44, 862–870.

    Article  PubMed  CAS  Google Scholar 

  28. Ylitalo P., Hinkka H., Neuvonen P. (1977): Effect of exercise on the serum level and urinary excretion of tetracycline and sulphamethizole. Eur. J. Clin. Pharmacol., 12, 367–373.

    Article  PubMed  CAS  Google Scholar 

  29. Stizel R.E., Furner R.L. (1967): Stress induced alterations in microsomal drug metabolism in the rat. Biochem. Pharmacol. 16, 1489–1494.

    Article  Google Scholar 

  30. Rauckman E.J. Rosen G.M., Post S.E., Gillogly S.D. (1980): Effect of model traumatic injury on hepatic drugmetabolizing enzymes. J. Trauma, 20, 884–886.

    Article  PubMed  CAS  Google Scholar 

  31. Griffeth L.K., Rosen G.M., Tschanz C., Rauckman E.J. (1983): Effects of model traumatic injury on hepatic drug metabolism in the rat. I.In vivo antipyrine metabolism. Drug Metab. Dispos., 11, 517–525.

    PubMed  CAS  Google Scholar 

  32. Griffeth L.K., Rosen G.M., Rauckman E.J. (1983): Effects of model traumatic injury on hepatic drug metabolism in the rat. V. Sulfation and acetylation. Drug Metab. Dispos., 13(4), 398–405.

    Google Scholar 

  33. Griffeth L.K., Rosen G.M., Rauckman E.J. (1987): Effects of model traumatic injury on hepatic drug metabolism in the rat. VI. Major detoxification/toxification pathways. Drug Metab. Dispos., 15, 749–759.

    PubMed  CAS  Google Scholar 

  34. Mahr U., Sorgel F., Naber K., Schumacher H., Gruber G. (1987): Penetration of norfloxacin (NOX) into body fluids of healthy volunteers. Abstr. Proc. 15th ICC, Istanbul, Turkey.

  35. Malter U., Jaehde U., Sorgel F., Stephan U., Hoffler D. (1987): Individual factors affecting the pharmacokinetics of pefloxacin (PEF). Abstr. Proc. 15th ICC, Istanbul, Turkey.

  36. White L., Macgowan A.P., Lovering A.M., Reeves D.S., Mackay A.P. (1987): The kinetics of ofloxacin desmethyl-ofloxacin and ofloxacin N-oxide in patients with chronic renal failure. Abstr. Proc. 15th ICC, Istanbul, Turkey.

  37. Christ W. (1987): Betrachtungen zum metabolitenmuster der quinolone mit Piperazinsubstituenten. Fortschritte der antimikrobiellen u. antineoplastischen Chemotherapie, 6–10, 2157–2161.

    Google Scholar 

  38. Kalager T., Digranes A., Bergan T., Rolstad T. (1985): Pharmacokinetics of Ofloxacin in serum and skin blister. Proc. of the 14th ICC, Kuoto, 1985. In: Recent Advances in Chemotherapy. Antimicrobial Section 2. Tokyo: University of Tokyo Press, pp. 1765–1766.

    Google Scholar 

  39. Wise R., Lockley R., Webberly M.J., Dent J. (1984): The pharmacokinetics and tissue penetration of enoxacin and norfloxacin. J. Antimicrob. Chemother., 14 Suppl. C, 75–81.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trichilis, A., Tesserommatis, C. & Varonos, D. Changes in serum levels of quinolones in rats under the influence of experimental trauma. Eur. J. Drug Metab. Pharmacokinet. 25, 73–78 (2000). https://doi.org/10.1007/BF03190070

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03190070

Keywords

Navigation