Skip to main content
Log in

Dynamic mixed mode crack propagation behavior of structural bonded joints

  • Materials & Fracture · Solids & Structures · Dynamics & Control · Production & Design
  • Published:
KSME International Journal Aims and scope Submit manuscript

Abstract

The stress field around the dynamically propagating interface crack tip under a remote mixed mode loading condition has been studied with the aid of dynamic photoelastic method. The variation of stress field around the dynamic interface crack tip is photographed by using the Cranz-Shardin type camera having 106 fps rate. The dynamically propagating crack velocities and the shapes of isochromatic fringe loops are characterized for varying mixed load conditions in double cantilever beam (DCB) specimens. The dynamic interface crack tip complex stress intensity factors,K 1 andK 2, determined by a hybrid-experimental method are found to increase as the load mixture ratio of y/x (vertical/horizontal) values. Furthermore, it is found that the dynamically propagating interface crack velocities are highly dependent upon the varying mixed mode loading conditions and that the velocities are significantly small compared to those under the mode I impact loading conditions obtained by Shukla (Singh & Shukla, 1996a, b) and Rosakis (Rosakis et al., 1998) in the USA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, G. P., et al., 1977,Analysis and Testing of Adhesive Bond, Academic Press, New York.

    Google Scholar 

  • Barber, J. R. and Comniou, M., 1983,J. Appl. Mech., Vol. 50, pp. 770–776

    Article  MATH  Google Scholar 

  • Comninou, M., 1977,J. Appl. Mech., E44, pp. 631–636.

    MATH  Google Scholar 

  • Comninou, M., 1990, “An Overview of Interface Cracks,”Engineering Fracture Mechanics, Vol. 37, pp. 197–208.

    Article  Google Scholar 

  • Dally, J. W. and Riley, W. F., 1991,Experimental Stress Analysis, McGraw Hill, pp. 424–506.

  • Deng, X., 1992, “Complete Complex Series Expansions of Near-Tip Fields for Steadily Growing Interface Cracks in Dissimilar Isotropic Materials,”Engineering Fracture Mechanics, Vol. 42, No. 2, pp. 237–242.

    Article  Google Scholar 

  • Deng, X., 1993, “General Crack-Tip Fields for Stationary and Steadily Growing Interface Cracks in Anisotropic Bimaterials,”Journal of Applied Mechanics, Vol. 60, pp. 183–189.

    Article  MATH  Google Scholar 

  • Durelli, A. J. and Dally, j. W., 1975, “Stress concentration factors under dynamic loading conditions,”Journal of Mechanical Engineering Science, Vol. 16, No. 1, pp. 69–92.

    Google Scholar 

  • Emery, A. F., et al., 1969,Experimental Mechanics, pp. 558–564.

  • Gao, H., 1991,J. Appl. Mech., vol. 58, pp. 931–168

    Article  MATH  Google Scholar 

  • Gdoutos, E. E., 1985, “Photoelasticity study of crack problems,” Photoelasticity in Engineering Practice, Elseviser, London, pp. 181–204.

    Google Scholar 

  • Gdoutos, E. E., et al, 1982,Engineering Fracture Mechanics, pp. 177–187

  • Gurtman, G. A. et al., 1965,Experimental Mechanics, Vol. 5, pp. 97–104

    Article  Google Scholar 

  • Kobayashi, A. S. and Mall, S., 1978, “Dynamic Fracture Toughness of Homalite-100,”Experimental Mechanics, Vol. 18, No. 1, pp. 11–18.

    Article  Google Scholar 

  • Kokini, K., 1988,ASME Trans., J. of Appl. Mech., Vol. 55, pp. 767–772.

    Article  Google Scholar 

  • Kokini, K., et al., 1989,Experimental Mechanics, pp. 373–381

  • Lee, O. S. and Kim, D. Y., 1999, “Crack-Arrest Phenomenon of an Aluminum Alloy,”Mechanics Research Communications, Vol. 26, No. 5, pp. 575–581.

    Article  MATH  Google Scholar 

  • Lu, H. and Chiang, F. P., 1993,J. Appl. Mech., Vol. 60, pp. 93–100

    Article  Google Scholar 

  • Martin-Morgan et al., 1983,J. Appl. Mech., Vol. 50, pp. 29–36

    Article  Google Scholar 

  • Mohammad, M. and Loren, Z., 1985, “Photoelastic Determination of Mixed Mode Stress intensity Factors for Sharp Reentrant Corners,”Engineering Fracture Mechanics, Vol. 52, No. 4, pp. 639–645.

    Google Scholar 

  • Naik, R. A. et al., 1992,NASA Report.

  • Prendergast, P. J. 1996,J. Bio. Engine, Vol. 118, pp. 579–585

    Article  Google Scholar 

  • Ramulu, M, 1982, A Ph. D. Dissertation Submitted to the University of Washington, “Dynamic Crack Curving and Branching.”

  • Rice., J. R. and Sih, G. C., 1965, “Plane Problems of Cracks in a Dissimilar Media,”ASME J. Appl. Mech., Vol. 32, pp. 418–423.

    Google Scholar 

  • Rosakis, A. J., Samudrala, O., Singh, R. P. and Shukla, A., 1998, “Intersonic Crack Propagation in Bimaterial System,”Journal of Mechanics and Physics of Soilds, Vol. 46, pp. 1789–1813.

    Article  MATH  Google Scholar 

  • Sanford, R. J., 1980, “Application of the Least Square Method to the Photoelastic Analysis,”Experimental Mechanics, Vol. 20, pp. 192–197

    Article  Google Scholar 

  • Singh, R. P. and Shukla, A, 1996a, “Subsonic and Transonic Crack Growth along a Bimaterial Interface,”International Journal of Fracture, Vol. 63, pp. 293–310.

    Google Scholar 

  • Singh, R. P. and Shukla, A., 1996b, “Characterization of Isochromatics Fringe Patterns for a Dynamic Propagating Interface Crack,”International Journal Fracture, Vol. 76, pp. 293–310.

    Google Scholar 

  • Tsuji, M. et al., 1979, J. Therm. Str., 2, 215–232.

    Article  Google Scholar 

  • Wang, W. et al., 1998, “Effect of Elastic Mismatch in Intersonic Crack Propagation Along a Bimaterial Interface,”Engineering Fracture Mechanics, Vol. 61, pp. 471–485.

    Article  Google Scholar 

  • Williams, M. L., 1959, “The Stresses around a Fault or Cracks in Dissimilar Media,”Bulletin of Seismological Society of America, Vol. 49, No. 2, pp. 199–204.

    Google Scholar 

  • Xu, X. P. and Needleman, A., 1996, “Numerical Simulations of Dynamic Crack Growth along an Interface,”International Journal of Fracture, Vol. 74, pp. 289–324.

    Article  Google Scholar 

  • Yang, W., Suo, Z and Shih, C. F., 1991, “Mechanics of Dynamic Debonding,”Proceedings of Royal Society of London, Series A, Vol. 433, pp. 679–697.

    Article  MATH  Google Scholar 

  • Zhang, P. et al., 1989, Eng. Frac. Mech., Vol. 24, pp. 589–599

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouk Sub Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, O.S., Park, J.C. & Kim, G.H. Dynamic mixed mode crack propagation behavior of structural bonded joints. KSME International Journal 14, 752–763 (2000). https://doi.org/10.1007/BF03184461

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03184461

Key Words

Navigation