Skip to main content
Log in

Immunological changes after a single bout of moderate-intensity exercise in a hot environment

Cambios inmunológicos después de realizar un ejercicio moderado en un entorno de alta temperatura

  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

This study was aimed to evaluate the possible changes caused by a single bout of moderate-intensity exercise in a hot environmental temperature on the immune function and on inflammatory markers. A total of 22 young male adults (VO2max, 55.4±3.6 ml·kg−1·min−1) volunteered to participate in an exercise session of 60 minutes on a treadmill ergometer at moderate speed (60% of the maximum aerobic speed) in hot environmental conditions (35°C and humidity 60%). Total leukocyte numbers, lymphocyte subsets (CD8+, CD4+, CD3+, NK and CD19+), cytokine production capacity by peripheral blood mononuclear cells (PBMCs) (IL-2, IL-4, IL-5, IL-10, IFN-γ and TNF-α) as well as the concentration of several inflammation related proteins (ceruloplasmin, C-reactive protein (CRP), complement factors C3 and C4) were evaluated before and after exercise. The results show that leukocyte and neutrophil absolute values increased (P<0.001) after the exercise period. In contrast, eosinophil values decreased (P<0.05) after the exercise. In addition, ceruloplasmin, C3 and C4 values (P<0.05) increased after exercise. No changes in T lymphocyte subsets, cytokine production, or CRP were observed. These data confirm previous studies suggesting that a 60 min exercise in a hot environment is enough to cause a physiologic adaptation to these special conditions leading to an increase of non-specific immune cells and promoting inflammatory processes. On the other hand, PCR values, lymphocyte subsets and the capacity of cytokine production by PBMC were not changed in a relatively short bout of exercise under these conditions in contrast with previous studies.

Resumen

El objetivo fue evaluar los posibles cambios producidos en marcadores inmunológicos y de inflamación, tras una prueba de ejercicio físico a una intensidad moderada y bajo un entorno de alta temperatura. Para ello, participaron voluntariamente un total de 22 varones jóvenes (VO2max, 55.4±3.6 ml·kg−1·min−1) en un protocolo de carrera en tapiz rodante durante 60 minutos a una velocidad moderada (al 60% de su velocidad aeróbica máxima), y bajo una entorno controlado de alta temperatura (35°C y 60% de humedad relativa). Se determinaron los parámetros correspondientes a la serie blanca (leucocitos totales y sus diferenciales), subpoblaciones de linfocitos CD8+, CD4+, CD3+, NK y CD19+, capacidad de producción de citoquinas IL-2, IL-4, IL-5, IL-10, IFN-γ y TNF-α, así como concentración de proteínas relacionadas con la inflamación (ceruloplasmina, proteína C reactiva y factores del complemento C3 y C4), antes y después de realizar la prueba de ejercicio físico. Los resultados mostraron un aumento significativo (P<0.001) en los valores absolutos de leucocitos y neutrófilos tras el ejercicio. Por otro lado, los valores de eosinófilos (P<0.05) disminuyeron después de la prueba. Los valores correspondientes a ceruloplasmina, C3 y C4 aumentaron (P<0.05) tras el ejercicio. Los resultados del presente estudio confirman estudios previos, y sugieren que 60 minutos de ejercicio en altas temperaturas es suficiente para producir una adaptación fisiológica a esas condiciones (aumento de las células responsables de la respuesta inmune inespecífica y de procesos inflamatorios). Sin embargo, no se observaron cambios en la proteína C reactiva, subpoblaciones de linfocitos, ni en la capacidad de producción de las citoquinas tras el ejercicio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brines R., Hoffman-Goetz, L. and Pedersen, B.K. Can you exercise to make your immune system fitter? (1996): Immunol Today, 17, 252–254.

    Article  CAS  PubMed  Google Scholar 

  2. Brolinson, P.G, Elliott, D. Exercise and the immune system. (2007): Clin Sports Med, 26, 311–319.

    Article  PubMed  Google Scholar 

  3. Dill, D.B. and Costill, D.L. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. (1974): J Appl Physiol, 37, 247–248.

    CAS  PubMed  Google Scholar 

  4. Gleeson, M. Immune function in sport and exercise. (2007): J Appl Physiol, 103, 693–639.

    Article  CAS  PubMed  Google Scholar 

  5. Kasapis, C. and Thompson, P.D. The effect of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. (2005): J Am Coll Cardiol, 45: 1563–1569.

    Article  CAS  PubMed  Google Scholar 

  6. Klentrou, P., Cieslak, T., McNeil, M., Vintinner, A. and Plyley, M. Effect of moderate exercise on salivary IgA and infection risk in humans. (2002): Eur J Appl Physiol, 87, 153–158.

    Article  CAS  PubMed  Google Scholar 

  7. Leger, L. and Boucher, R. An indirect continuous running multistage field test: the Universite de Montreal track test. (1980): Can J Appl Sport Sci, 5, 77–84.

    CAS  PubMed  Google Scholar 

  8. Lim, C.L., Byrne, C., Chew, S.A. and Mackinnon, L.T. Leukocyte subset response during exercise under heat stress with carbohydrate or water intake (2005): Aviat Space Environ Med, 76, 726–732.

    PubMed  Google Scholar 

  9. MacKinnon, L.T. Current challenges and future expectations in exercise immunology: back to the future. (1994): Med Sci Sports Exercise, 26, 191–194.

    Article  CAS  Google Scholar 

  10. Matthews, C.E., Ockene, I.S., Freedson, P.S., Rosal, M.C., Merriam, P.A. and Hebert, J.R. Moderate to vigorous physical activity and risk of upper-respiratory tract infection. (2002): Med Sci Sports Exerc, 34: 1242–1248.

    Article  PubMed  Google Scholar 

  11. Maughan, R.J., Shirreffs, S.M. and Watson, P. Exercise, heat, hydration and the brain. (2007): J Am Coll Nutr, 26, 604–612.

    Google Scholar 

  12. McFarlin, B.K. and Mitchell, J.B. Exercise in hot and cold environments: differential effects on leukocyte number and NK cell activity. (2003): Aviat Space Environ Med, 74, 1231–1236.

    PubMed  Google Scholar 

  13. Mitchell, J.B., Dugas, J.P., McFarlin, B.K. and Nelson, M.J. Effect of exercise, heat stress, and hydration on immune cell number and function. (2002): Med Sci Sports Exerc, 34, 1941–1950.

    Article  CAS  PubMed  Google Scholar 

  14. Montain, S.J., Latzka, W.A. and Sawka, M.N. Impact of muscle injury and accompanying inflammatory response on thermoregulation during exercise in the heat. (2000): Appl Physiol, 89, 1123–1130.

    CAS  Google Scholar 

  15. Moshage, H.J., Roelofs, H.M., van Pelt, J.F., Hazenberg, B.P., van Leeuwen, M.A., Limburg, P.C., Aarden, L.A. and Yap, S.H. The effect of interleukin-1, interleukin-6 and its interrelationship on the synthesis of serum amyloid A and C-reactive protein in primary cultures of adult human hepatocytes. (1998): Biochem Biophys Res Commun, 155, 112–117.

    Article  Google Scholar 

  16. Nieman, D.C. and Pedersen, B.K. Exercise and immune function. Recent developments. (1999): Review Sports Med, 27, 73–80.

    Article  CAS  Google Scholar 

  17. Nieman, D.C. Current perspective on exercise immunology. (2003): Curr Sports Med Rep, 22, 239–242.

    Google Scholar 

  18. Pedersen, B.K. and Nieman, D.C. Exercise and immunology: integration and regulation. (1998): Immunol Today, 19, 204–206.

    Article  CAS  PubMed  Google Scholar 

  19. Pedersen, B.K. and Hoffman-Goetz, L. Exercise and the immune system: regulation, integration, and adaptation. (2000): Physiol Rev, 80, 1055–1081.

    CAS  PubMed  Google Scholar 

  20. Pedersen, B.K. and Hoffman-Goetz, L. Exercise as a stress model and the interplay between the hypothalamus-pituitary-adrenal and the hypothalamus-pituitary-thyroid axes. (2005): Horm Metab Res, 37, 577–584.

    Article  Google Scholar 

  21. Rhind, S.G., Gannon, G.A., Shephard, R.J., Buguet, A., Shek, P.N. and Radomski, M.W. Cytokine induction during exertional hyperthermia is abolished by core temperature clamping: neuroendocrine regulatory mechanisms. (2004): Int J Hyperthermia, 20, 503–516.

    Article  CAS  PubMed  Google Scholar 

  22. Romeo, J., Wärnberg, J., Nova, E., Díaz, L.E., González-Gross, M. and Marcos, A. Changes in the immune system after moderate beer consumption (2007): Ann Nutr Metab, 51, 359–366.

    Article  CAS  PubMed  Google Scholar 

  23. Severs, Y., Brenner, I., Shek, P.N. and Shephard, R.J. Effects of heat and intermittent exercise on leukocyte and sub-population cell counts. (1996): Eur. J Appl Physiol Occup Physiol, 74, 234–245.

    Article  CAS  PubMed  Google Scholar 

  24. Shephard, R.J. Exercise under hot conditions: a major threat to the immune response? (2002): J Sports Med Phys Fitness, 42, 368–378.

    CAS  PubMed  Google Scholar 

  25. Starkie, R.L., Hargreaves, M., Rolland, J. and Febbraio, M.A. Heat stress, cytokines, and the immune response to exercise. (2005): Brain Behav Immun, 19, 404–412.

    Article  CAS  PubMed  Google Scholar 

  26. Walsh, N.P. and Whitham, M. Exercising in Environmental Extremes A Greater Threat to Immune Function? (2006): Sports Med, 36, 941–976.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Marcos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romeo, J., Jiménez-Pavón, D., Cervantes-Borunda, M. et al. Immunological changes after a single bout of moderate-intensity exercise in a hot environment. J. Physiol. Biochem. 64, 197–204 (2008). https://doi.org/10.1007/BF03178842

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178842

Key words

Palabras clave

Navigation