Skip to main content
Log in

The effect of in vitro γ-irradiation on mitogenic responsiveness of murine lymphocytes

Efecto de la irradiación-γ in vitro sobre la respuesta mitogénica de linfocitos de ratón

  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The objective of this study was to analyze the proliferative response of BALB/c mice lymphocytes after in vitro irradiation (0.05 to 6 Gy). The capability of irradiated lymphocytes for proliferating without any stimulation and after activation with specific T and B cell mitogens has been evaluated. The results show that ionizing radiation significantly inhibits spontaneous cellular proliferation and that induced by mitogens and that variations in the degree of inhibition are found depending on the inducing proliferation mitogens and the dosage applied. The conclusion drawn is that different lymphocyte populations have different radiosensitivities, being B cells more sensitive to ionizing irradiation than T cells. Besides, the effects of gamma-irradiation vary according to the different subpopulations of T cells or, alternatively, to different T-dependent activation mechanisms.

Resumen

El objetivo de este estudio fue analizar la respuesta proliferativa de linfocitos de ratón BALB/c después de irradiación in vitro (0.05 to 6 Gy). Se evaluó la capacidad de los linfocitos irradiados para proliferar sin estímulo y también tras la activación con mitógenos específicos para las células T y B. Los resultados mostraron que la radiación ionizante inhibe significativamente la proliferación celular espontánea y la inducida por mitógenos y que las variaciones en el grado de inhibición son dependientes del mitógeno inductor de la proliferación y de la dosis aplicada. Se concluye que las diferentes poblaciones linfocitarias tienen diferentes radiosensibilidades. Así, las células B son más sensibles a la radiación ionizante que las células T. Por otra parte, los efectos de la radiación gamma varían según diferentes subpoblaciones de células T o, alternativamente, según diferentes mecanismos de activación T-dependientes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashraf, M.T., Khan, R.H. (2003): Mitogenic lectins. Med Sci Monit, 9, RA265–269.

    PubMed  Google Scholar 

  2. Belli, M., Sapora, O., Tabocchini, M.A. (2002): Molecular targets in cellular response to ionizing radiation and implications in space radiation protection. J Radiat Res, 43, S13-S19.

    Article  CAS  PubMed  Google Scholar 

  3. Bishay, K., Ory, K., Lebeau, J., Levalois, C., Olivier, M.F., Chevillard, S. (2000): DNA damage-related gene expression as biomarkers to assess cellular response after gamma irradiation of a human lymphoblastoid cell line. Oncogene, 19, 916–923.

    Article  CAS  PubMed  Google Scholar 

  4. Brazowski, E., Eytan, K., Eisenthal, A. (2007): In vitro modulation of interleukin-2-mediated human peripheral mononuclear cell proliferation and antitumor cytotoxicity by 5-fluorouracil. Anticancer Res, 27, 4135–4141.

    CAS  PubMed  Google Scholar 

  5. Borggrefe, T., Keshavarzi, S., Gross, B., Wabl, M., Jessberger, R. (2001): Impaired IgE response in SWAP-70-deficient mice. Eur J Immunol, 31, 2467–2475.

    Article  CAS  PubMed  Google Scholar 

  6. Fang, S., Tago, F., Tanaka, T., Simura, N., Muto, Y., Goto, R., Kojima, S. (2005): Repeated irradiations with gamma-rays at a dose of 0.5 Gy may exarcebate asthma. J Radiat Res, 46, 151–156.

    Article  PubMed  Google Scholar 

  7. Fornari, M.C., Scolnik, M.P., Palacios, M.F., Intebi, A.D., Diez, R.A. (1994): Growth hormone inhibits normal B-cell differentiation and neutrophils’ chemotaxis in vitro. Int J Immunopharmacol, 16, 667–673.

    Article  CAS  PubMed  Google Scholar 

  8. Flores, K.G., McAllister, K.A., Greer, P.K., Wiseman, R.W., Hale, L.P. (2002): Thymic model for examining BRCA-2 expression and function. Mol. Carcinog, 35, 103–109.

    Article  CAS  PubMed  Google Scholar 

  9. Ina, Y., Sakai, K. (2005): Activation of immunological network by chronic low-dose-rate irradiation in wild-type mouse strains: analysis of immune cell populations and surface molecules. Int J Radiat Biol, 81, 721–729.

    Article  CAS  PubMed  Google Scholar 

  10. Krappmann, D., Patke, A., Heissmeyer, V., Scheidereit, C. (2001): B-cell receptor- and phorbol ester-induced NF-kappaB and c-Jun N-terminal kinase activation in B cells requires novel protein kinase C’s. Mol Cell Biol, 21, 6640–6650.

    Article  CAS  PubMed  Google Scholar 

  11. Laska, E.M., Meisner, M.J. (1987): Statistical methods and applications of bioassay. Annu Rev Pharmacol Toxicol, 27, 385–397.

    Article  CAS  PubMed  Google Scholar 

  12. Leatherbarrow, R.J. (1990): Using linear and non-linear regression to fit biochemical data. Trends Biochem Sci, 15, 455–458.

    Article  PubMed  Google Scholar 

  13. Li, X.L., Shen, S.R., Wang, S., Ouyang, H.H., Li, G.C. (2002): Restoration of T cell-specific V(D)J recombination in DNA-PKcs (−/−) mice by ionizing radiation: The effects on survival, development, and tumorigenesis. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai), 34, 149–157.

    CAS  Google Scholar 

  14. Liao, Y.P., Wang, C.C., Butterfield, L.H., Economou, J.S., Ribas, A., Meng, W.S., Iwamoto, K.S., McBride, W.H. (2004): Ionizing radiation affects human MART-1 melanoma antigen processing and presentation by dendritic cells. J Immunol, 173, 2462–2469.

    CAS  PubMed  Google Scholar 

  15. Lindner, H., Holler, E., Gerbitz A., Johnson, J.P., Bornkamm, G.W., Eissner, G. (1997): Influence of bacterial endotoxin on radiation-induced activation of human endothelial cells in vitro and in vivo: interleukin-10 protects against transendothelial migration. Transplantation, 64, 1370–1373.

    Article  CAS  PubMed  Google Scholar 

  16. Louagie, H., Van Eijkeren, M., Philippe, J., Thierens, H., de Ridder, L. (1999): Changes in peripheral blood lymphocyte subsets in patients undergoing radiotherapy. Int J Radiat Biol, 75, 767–771.

    Article  CAS  PubMed  Google Scholar 

  17. Manori, I., Kushelevsky, A., Segal, S., Weinstein, Y. (1985): Effects of radiation on the production of interleukins and T-lymphocyte activities. J Natl Cancer Inst, 74, 1215–1221.

    CAS  PubMed  Google Scholar 

  18. Mayer, C., Popanda, O., Zelezny, O., von Brevern, M.C., Bach, A., Bartsch, H., Schmezer, P. (2002): DNA repair capacity after gamma-irradiation and expression profiles of DNA repair genes in resting and proliferating human peripheral blood lymphocytes. DNA Repair (Amst), 1, 237–250.

    Article  CAS  Google Scholar 

  19. Mori, M., Desaintes, C. (2004): Gene expression in response to ionizing radiation: an overview of molecular features in hematopoietic cells. J Biol Regul Homeost Agents, 18, 363–371.

    CAS  PubMed  Google Scholar 

  20. Mori, M., Benotmane, M.A., Tirone, I., Hooghe-Peters, E.L., Desaintes, C. (2005): Transcriptional response to ionizing radiation in lymphocyte subsets. Cell Mol Life Sci, 62, 1489–1501.

    Article  CAS  PubMed  Google Scholar 

  21. Mosmann, T. (1983): Rapid colorimetric assay for cellular growth and survival: application to proliferation and citotoxicity assays. J. Immunol. Methods, 65, 55–63.

    Article  CAS  PubMed  Google Scholar 

  22. Park, W.Y., Hwang, C.I., Im, C.N., Kang, M.J., Woo, J.H., Kim, J.H., Kim, Y.S., Kim, J.H., Kim, H., Kim, K.A., Yu, H.J., Lee, S.J., Lee, Y.S., Seo, J.S. (2002): Identification of radiation-specific responses from gene expression profile. Oncogene, 21, 8521–8628.

    Article  CAS  PubMed  Google Scholar 

  23. Pecaut, M.J., Dutta-Roy, R., Miller, G.M., Gridley, D.S. (2007): Radiation and primary immune response to lipopolysaccharide: lymphocyte distribution and function. In Vivo, 21, 463–470.

    CAS  PubMed  Google Scholar 

  24. Planelles, D., Hernández-Godoy, J., González-Molina, A. (1992): Differential effects of the calcium ionophore A23187 and the phorbol ester PMA on lymphocyte proliferation. Agents Actions, 35, 238–244.

    Article  CAS  PubMed  Google Scholar 

  25. Planelles, D., Hernández-Godoy, J., Montoro, A., Montoro, J., González-Molina, A. (1994): Seasonal variations in proliferative response and subpopulations of lymphocytes from mice housed in a constant environment. Cell Prolif, 27, 333–341.

    Article  CAS  PubMed  Google Scholar 

  26. Roitt, I.M. (2003): Inmunología. Fundamentos, 10a Edición, Ed. Panamericana, Buenos Aires, Argentina. Pp. 1–21, 23–40.

    Google Scholar 

  27. Roy, R.M., Petrella, M., Shateri, H. (1988): Effects of administering tocopherol after irradiation on survival and proliferation of murine lymphocytes. Pharmacol. Ther., 39, 393–395.

    Article  CAS  PubMed  Google Scholar 

  28. Sagan, D., Mörtl, S., Müller, I., Eckardt-Schupp, F., Eichholtz-Wirth, H. (2007): Enhanced CD95-mediated apoptosis contributes to radiation hypersensitivity of NBS lymphoblasts. Apoptosis, 12, 753–767.

    Article  CAS  PubMed  Google Scholar 

  29. Shankar, B., Sainis, K.B. (2005): Cell cycle regulators modulating con A mitogenesis and apoptosis in low dose radiation-exposed mice. J Environ Pathol Toxicol Oncol, 24, 33–43.

    Article  CAS  PubMed  Google Scholar 

  30. Shultz, L.D., Lyons, B.L., Burzenski, L.M., Gott, B., Chen, X., Chaleff, S., Kotb, M., Gillies, S.D., King, M., Mangada, J., Greiner, D.L., Handgretinger, R. (2005): Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol, 174, 6477–6489.

    CAS  PubMed  Google Scholar 

  31. Tago, F., Tsukimoto, M., Nakatsukasa, H., Kojima, S. (2008): Repeated 0.5 Gy gamma irradiation attenuates autoimmune disease in MRL-lpr/lpr mice with supression of CD3+CD4-CD8-B220+T-cell proliferation and with up-regulation of CD4+CD25+Foxp3+regulatory T cells. Radiat Res, 169, 59–66.

    Article  CAS  PubMed  Google Scholar 

  32. Tamura, T., Ishihara, M., Lamphier, M.S., Tanaka, N., Oishi, I., Aizawa, S., Matsuyama, T., Mak, T.W., Taki, S., Taniguchi, T. (1995): An IRF-1-dependent pathway of DNA damage-induced apoptosis in mitogen-activated T-lymphocytes. Nature, 376, 596–599.

    Article  CAS  PubMed  Google Scholar 

  33. Tamura, T., Ishihara, M., Lamphier, M.S., Tanaka, N., Oishi, I., Aizawa, S., Matsuyama, T., Mak, T.W., Taki, S. (1997): DNA damage-induced apoptosis Ice gene induction in mitogenically activated T lymphocytes require IRF-1. Leukemia, 11 Suppl 3, 439–440.

    PubMed  Google Scholar 

  34. Vral, A., Thierens, H., Bryant, P., De Ridder, L. (2001): A higher micronucleus yield in B-versus T-cells after low-dose gamma-irradiation is not linked with defective Ku86 protein. Int J Radiat Biol, 77, 329–339.

    Article  CAS  PubMed  Google Scholar 

  35. Vokurková, D., Sinkora, J., Vávrová, J., Rezácová, M., Knízek, J., Ostereicher, J. (2006): CD8+natural killer cells have a potential of a sensitive and reliable biododimetric marker in vitro. J Physiol Res, 55, 689–698.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Balsalobre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández-Godoy, J., Planelles, D., Balsalobre, B. et al. The effect of in vitro γ-irradiation on mitogenic responsiveness of murine lymphocytes. J Physiol Biochem 64, 179–187 (2008). https://doi.org/10.1007/BF03178840

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178840

Key words

Palabras clave

Navigation