Skip to main content

Advertisement

Log in

Enhanced CD95-mediated apoptosis contributes to radiation hypersensitivity of NBS lymphoblasts

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The molecular causes for enhanced radiosensitivity of Nijmegen Breakage Syndrome cells are unclear, especially as repair of DNA damage is hardly impeded in these cells. We clearly demonstrate that radiation hypersensitivity is accompanied by enhanced γ-radiation-induced apoptosis in NBS1 deficient lymphoblastoid cell lines. Differences in the apoptotic behavior of NBS1 −/− and NBS1 +/− cells are not due to an altered p53 stabilization or phosphorylation in NBS1 / cells. γ-radiation-induced caspase-8 activity is increased and visualization of CD95 clustering by laser scanning microscopy shows a significant higher activation of the death receptor in NBS1 / cells. Further investigation of the molecular mechanisms reveals a role for reactive oxygen species-triggered activation of CD95. These results demonstrate that NBS1 suppresses the CD95 death receptor-dependent apoptotic pathway after γ-irradiation and evidence is given that this is achieved by regulation of the PI3-K/AKT survival pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Digweed M, Sperling K (2004) Nijmegen breakage syndrome: clinical manifestation of defective response to DNA double-strand breaks. DNA Repair (Amst) 3:1207–1217

    Article  CAS  Google Scholar 

  2. Shiloh Y (1997) Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Ann Rev Genet 31:635–662

    Article  PubMed  CAS  Google Scholar 

  3. Tauchi H, Matsuura S, Kobayashi J, Sakamoto S, Komatsu K (2002) Nijmegen breakage syndrome gene, NBS1, and molecular links to factors for genome stability. Oncogene 21: 8967–8980

    Article  PubMed  CAS  Google Scholar 

  4. Buscemi G, Savio C, Zannini L et al (2001) Chk2 activation dependence on Nbs1 after DNA damage. Mol Cell Biol 21: 5214–5222

    Article  PubMed  CAS  Google Scholar 

  5. Yazdi PT, Wang Y, Zhao S, Patel N, Lee EY, Qin J (2002) SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev 16:571–582

    Article  PubMed  CAS  Google Scholar 

  6. Jongmans W, Vuillaume M, Chrzanowska K, Smeets D, Sperling K, Hall J (1997) Nijmegen breakage syndrome cells fail to induce the p53-mediated DNA damage response following exposure to ionizing radiation. Mol Cell Biol 17:5016–5022

    PubMed  CAS  Google Scholar 

  7. Huang J, Dynan WS (2002) Reconstitution of the mammalian DNA double-strand break end-joining reaction reveals a requirement for an Mre11/Rad50/NBS1-containing fraction. Nucleic Acids Res 30:667–674

    Article  PubMed  CAS  Google Scholar 

  8. Kraakman-van der Zwet M, Overkamp WJ, Friedl AA et al (1999) Immortalization and characterization of Nijmegen Breakage syndrome fibroblasts. Mutat Res 434:17–27

    PubMed  CAS  Google Scholar 

  9. Riballo E, Kuhne M, Rief N et al (2004) A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell 16:715–724

    Article  PubMed  CAS  Google Scholar 

  10. Howlett NG, Scuric Z, D’Andrea AD, Schiestl RH (2006) Impaired DNA double strand break repair in cells from Nijmegen breakage syndrome patients. DNA Repair (Amst) 5:251–257

    Article  CAS  Google Scholar 

  11. Tauchi H, Kobayashi J, Morishima K et al (2002) Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells. Nature 420:93–98

    Article  PubMed  CAS  Google Scholar 

  12. Hickson ID, Davies SL, Davies SM, Robson CN (1990) DNA repair in radiation sensitive mutants of mammalian cells: possible involvement of DNA topoisomerases. Int J Radiat Biol 58:561–568

    PubMed  CAS  Google Scholar 

  13. Tauchi H (2000) Positional cloning and functional analysis of the gene responsible for Nijmegen breakage syndrome, NBS1. J Radiat Res (Tokyo) 41:9–17

    Article  CAS  Google Scholar 

  14. Bernstein C, Bernstein H, Payne CM, Garewal H (2002) DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res 511:145–178

    Article  PubMed  CAS  Google Scholar 

  15. Frappart PO, Tong WM, Demuth I et al (2005) An essential function for NBS1 in the prevention of ataxia and cerebellar defects. Nat Med 11:538–544

    Google Scholar 

  16. Rogoff HA, Pickering MT, Frame FM et al (2004) Apoptosis associated with deregulated E2F activity is dependent on E2F1 and Atm/Nbs1/Chk2. Mol Cell Biol 24:2968–2977

    Article  PubMed  CAS  Google Scholar 

  17. Zhang Y, Lim CU, Williams ES et al (2005) NBS1 knockdown by small interfering RNA increases ionizing radiation mutagenesis and telomere association in human cells. Cancer Res 65:5544–5553

    Article  PubMed  CAS  Google Scholar 

  18. O’Connor L, Harris AW, Strasser A (2000) CD95 (Fas/APO-1) and p53 signal apoptosis independently in diverse cell types. Cancer Res 60:1217–1220

    PubMed  CAS  Google Scholar 

  19. Sheard MA, Uldrijan S, Vojtesek B (2003) Role of p53 in regulating constitutive and X-radiation-inducible CD95 expression and function in carcinoma cells. Cancer Res 63:7176–7184

    PubMed  CAS  Google Scholar 

  20. Owen-Schaub LB, Zhang W, Cusack JC et al (1995) Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 15:3032–3040

    PubMed  CAS  Google Scholar 

  21. Houston A, O’Connell J (2004) The Fas signalling pathway and its role in the pathogenesis of cancer. Curr Opin Pharmacol 4:321–326

    Article  PubMed  CAS  Google Scholar 

  22. Huang HL, Fang LW, Lu SP, Chou CK, Luh TY, Lai MZ (2003) DNA-damaging reagents induce apoptosis through reactive oxygen species-dependent Fas aggregation. Oncogene 22:8168–8177

    Article  PubMed  CAS  Google Scholar 

  23. Varon R, Vissinga C, Platzer M et al (1998) Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93:467–476

    Article  PubMed  CAS  Google Scholar 

  24. Demuth I, Frappart PO, Hildebrand G et al (2004) An inducible null mutant murine model of Nijmegen breakage syndrome proves the essential function of NBS1 in chromosomal stability and cell viability. Hum Mol Genet 13:2385–2397

    Article  PubMed  CAS  Google Scholar 

  25. Ueki K, Algenstaedt P, Mauvais-Jarvis F, Kahn CR (2000) Positive and negative regulation of phosphoinositide 3-kinase-dependent signaling pathways by three different gene products of the p85alpha regulatory subunit. Mol Cell Biol 20:8035–8046

    Article  PubMed  CAS  Google Scholar 

  26. Cerosaletti KM, Desai-Mehta A, Yeo TC, Kraakman-Van Der Zwet M, Zdzienicka MZ, Concannon P (2000) Retroviral expression of the NBS1 gene in cultured Nijmegen breakage syndrome cells restores normal radiation sensitivity and nuclear focus formation. Mutagenesis 15:281–286

    Article  PubMed  Google Scholar 

  27. Lundberg AS, Weinberg RA (1999) Control of the cell cycle and apoptosis. Eur J Cancer 35:1886–1894

    Article  PubMed  CAS  Google Scholar 

  28. Al Rashid ST, Dellaire G, Cuddihy A et al (2005) Evidence for the direct binding of phosphorylated p53 to sites of DNA breaks in vivo. Cancer Res 65:10810–10821

    Article  PubMed  CAS  Google Scholar 

  29. Bader AG, Kang S, Zhao L, Vogt PK (2005) Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer 5:921–929

    Article  PubMed  CAS  Google Scholar 

  30. Osaki M, Oshimura M, Ito H (2004) PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 9:667–676

    Article  PubMed  CAS  Google Scholar 

  31. Chen YC, Su YN, Chou PC et al (2005) Overexpression of NBS1 contributes to transformation through the activation of phosphatidylinositol 3-kinase/Akt. J Biol Chem 280:32505–32511

    Article  PubMed  CAS  Google Scholar 

  32. Bilderback TR, Gazula VR, Dobrowsky RT (2001) Phosphoinositide 3-kinase regulates crosstalk between Trk A tyrosine kinase and p75(NTR)-dependent sphingolipid signaling pathways. J Neurochem 76:1540–1551

    Article  PubMed  CAS  Google Scholar 

  33. Gulbins E, Grassme H (2002) Ceramide and cell death receptor clustering. Biochim Biophys Acta 1585:139–145

    PubMed  CAS  Google Scholar 

  34. Grassme H, Cremesti A, Kolesnick R, Gulbins E (2003) Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 22:5457–5470

    Article  PubMed  CAS  Google Scholar 

  35. Kolesnick R, Fuks Z (2003) Radiation and ceramide-induced apoptosis. Oncogene 22:5897–5906

    Article  PubMed  CAS  Google Scholar 

  36. Albanese J, Dainiak N (2000) Regulation of TNFRSF6 (Fas) expression in ataxia telangiectasia cells by ionizing radiation. Radiat Res 154:616–624

    Article  PubMed  CAS  Google Scholar 

  37. Bebb DG, Warrington PJ, de Jong G et al (2001) Radiation induced apoptosis in ataxia telangiectasia homozygote, heterozygote and normal cells. Mutat Res 476:13–20

    PubMed  CAS  Google Scholar 

  38. Takao N, Li Y, Yamamoto K (2000) Protective roles for ATM in cellular response to oxidative stress. FEBS Lett 472:133–136

    Article  PubMed  CAS  Google Scholar 

  39. Takao N, Kato H, Mori R et al (1999) Disruption of ATM in p53-null cells causes multiple functional abnormalities in cellular response to ionizing radiation. Oncogene 18:7002–7009

    Article  PubMed  CAS  Google Scholar 

  40. Lee JH, Paull TT (2004) Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304:93–96

    Article  PubMed  CAS  Google Scholar 

  41. Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y (2003) Requirement of the MRN complex for ATM activation by DNA damage. Embo J 22:5612–5621

    Article  PubMed  CAS  Google Scholar 

  42. Dumaz N, Meek DW (1999) Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. Embo J 18:7002–7010

    Article  PubMed  CAS  Google Scholar 

  43. Lambert PF, Kashanchi F, Radonovich MF, Shiekhattar R, Brady JN (1998) Phosphorylation of p53 serine 15 increases interaction with CBP. J Biol Chem 273:33048–33053

    Article  PubMed  CAS  Google Scholar 

  44. Difilippantonio S, Celeste A, Fernandez-Capetillo O et al (2005) Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nat Cell Biol 7:675–685

    Article  PubMed  CAS  Google Scholar 

  45. Fulda S, Debatin KM (2003) Death receptor signaling in cancer therapy. Curr Med Chem Anti-Canc Agents 3:253–262

    Article  CAS  Google Scholar 

  46. Belka C, Marini P, Budach W et al (1998) Radiation-induced apoptosis in human lymphocytes and lymphoma cells critically relies on the up-regulation of CD95/Fas/APO-1 ligand. Radiat Res 149:588–595

    Article  PubMed  CAS  Google Scholar 

  47. Sheard MA (2001) Ionizing radiation as a response-enhancing agent for CD95-mediated apoptosis. Int J Cancer 96:213–220

    Article  PubMed  CAS  Google Scholar 

  48. Hamasu T, Inanami O, Asanuma T, Kuwabara M (2005) Enhanced induction of apoptosis by combined treatment of human carcinoma cells with X rays and death receptor agonists. J Radiat Res (Tokyo) 46:103–110

    Article  CAS  Google Scholar 

  49. Kuwabara M, Takahashi K, Inanami O (2003) Induction of apoptosis through the activation of SAPK/JNK followed by the expression of death receptor Fas in X-irradiated cells. J Radiat Res (Tokyo) 44:203–209

    Article  CAS  Google Scholar 

  50. Damen JE, Liu L, Rosten P et al (1996) The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphatase. Proc Natl Acad Sci USA 93:1689–1693

    Article  PubMed  CAS  Google Scholar 

  51. Lioubin MN, Algate PA, Tsai S, Carlberg K, Aebersold A, Rohrschneider LR (1996) p150Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity. Genes Dev 10:1084–1095

    PubMed  CAS  Google Scholar 

  52. Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–13378

    Article  PubMed  CAS  Google Scholar 

  53. Myers MP, Pass I, Batty IH et al (1998) The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci USA 95:13513–13518

    Article  PubMed  CAS  Google Scholar 

  54. Osaki M, Kase S, Adachi K, Takeda A, Hashimoto K, Ito H (2004) Inhibition of the PI3K-Akt signaling pathway enhances the sensitivity of Fas-mediated apoptosis in human gastric carcinoma cell line, MKN-45. J Cancer Res Clin Oncol 130:8–14

    Article  PubMed  CAS  Google Scholar 

  55. Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank M. Digweed for the supply of the lymphoblastoid cell lines used for this study. We thank J. Favor, GSF—Institute of Developmental Genetics, for critically reading the manuscript and highly acknowledge the technical help from K. Winkler and N. Kunz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Sagan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagan, D., Mörtl, S., Müller, I. et al. Enhanced CD95-mediated apoptosis contributes to radiation hypersensitivity of NBS lymphoblasts. Apoptosis 12, 753–767 (2007). https://doi.org/10.1007/s10495-006-0021-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0021-0

Keywords

Navigation