Skip to main content
Log in

Generation of Lymphokine-Activated Killers on the Background of a Decresed Content of T-regulatory Cells In Vitro

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

In this work we studied the effect of different concentrations of interleukin-2 (IL-2) and interferon-γ (IFN-γ) on the proliferation and immunophenotype of lymphocytes obtained from patients with locally advanced breast cancer (stage II-III) after immunomagnetic depletion of regulatory T cells (Tregs) from the general pool of lymphocytes in vitro. The peripheral blood of 11 patients was used as a material. Peripheral blood mononuclear cells (MNCs) were isolated and regulatory T lymphocytes were removed by immunomagnetic separation. After separation, the cells were cultured in a nutrient medium RPMI-1640 with 10% fetal bovine serum (FBS) for 7 days. Lymphocytes were activated on the first day of cultivation with one of the following cytokines: IFN-γ (10 IU/mL), IL-2 (0.1 or 1 μg/mL); IL-2 (0.1 or 1 μg/mL) and IFN-γ together. Lymphocytes without cytokine addition was used as a control. Cells were counted using an automatic counter before addition cytokines and after 2, 4, and 7 days of cultivation with cytokines, and their phenotype was examined. The results showed some phenotypic differences in some elements of cellular immunity between control and experimental samples. Particular attention is paid to the description of changes in the expression of surface markers in the natural killer (NK) subpopulation. It was noted that the proportion of Tregs, despite their preliminary depletion, increased after exposure to cytokines. As a result, the preliminary decrease in the proportion of Treg cells before the stimulation of lymphocytes did not produce the expected effect, therefore the use of depletion in such a methodological mode did not lead to significant results. However, one should not exclude the possibility of inhibiting Tregs by other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Abramov, M.E., Gutorov, S.L., Slavina, E.G., Kadagidze, Z.G., Chertkova, A.I., Chernoglazova, E.V., Rotobelskaya, L.E., and Lichinitser, M.R., Chemotharepy + γ-IFN (Ingaron) of metastatic skin melanoma. Clinical immunological study, Russ. J. Biother., 2009, vol. 8, p. 64.

    Google Scholar 

  2. Berezhnaya, N.M. and Chekhun, V.F., Immunologiya zlokachestvennogo rosta (Immunology of Malignant Growth), Kiev: Naukova Dumka, 2005.

  3. Chikileva, I.O, Velizheva, N.P., Shubina, I.Zh., Titov, K.S., and Kiselevsky, M.V., Content of T-regulatory lymphocytes CD4+CD25+FOXP3+ in lymphokine-activated killer population, Vestn. RONTs im. N.N. Blokhina Ross. Akad. Med. Nauk, 2008, vol. 3, p. 16.

    Google Scholar 

  4. Crespo, J., Sun, H., Welling, T.H., Tian, Z., and Zou, W., T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment, Curr. Opin. Immunol., 2013, vol. 25, p. 214. https://doi.org/10.1016/j.coi.2012.12.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Cristiani, C.M., Palella, E., Sottile, R., Tallerico, R., Garofalo, C., and Carbone, E., Human NK cell subsets in pregnancy and disease: toward a new biological complexity, Front. Immunol., 2016, vol. 7, p. 656. https://doi.org/10.3389/fimmu.2016.00656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. East, J.E., Kennedy, A.J., and Webb, T.J., Raising the roof: the preferential pharmacological stimulation of Th1 and Th2 response mediated by NKT cells, Med. Res. Rev., 2014 vol. 34, p. 45. https://doi.org/10.1002/med.21276

    Article  PubMed  CAS  Google Scholar 

  7. Fang, F., Xiao, W., and Tian, Z., NK cell-based immunotherapy for cancer, Semin. Immunol., 2017, vol. 31, p. 37. https://doi.org/10.1016/j.smim.2017.07.009

    Article  PubMed  CAS  Google Scholar 

  8. Hazenberg, M.D. and Spits, H., Human innate lymphoid cells, Blood, 2014, vol. 124, p. 700. https://doi.org/10.1182/blood-2013-11-427781

    Article  PubMed  CAS  Google Scholar 

  9. Kadagidze, Z.G., Slavina, E.G., and Chertkova, A.N., Interferon-gamma in oncology, Farmateka, 2013, vol. 17, p. 40.

    Google Scholar 

  10. Khryanin, A.A. and Reshetnikov, O.V., Interferon-gamma: Treatment horizons, Antibiotics Chemother. (Russ.), 2016, vol. 61, p. 35.

    CAS  Google Scholar 

  11. Kimura, H. and Yamaguchi, Y., A phase III randomized study of interleukin-2-2 lymphokine-activated killer cell immunotherapy combined with chemotherapy or radiotherapy after curative or noncurative resection of primary lung carcinoma, Cancer, 1997, vol. 80, p. 42.

    Article  CAS  Google Scholar 

  12. Kiselevskii, M.V., Chikileva, I.O., Zharkova, O.V., Ziganshina, N.V., Korolenkova, L.I, and Sitdikova, S.M., Prospects of combining interleukin-2-2 with immune checkpoint inhibitors for cancer therapy, Problems Oncol., 2020, vol. 66, p. 23. https://doi.org/10.37469/0507-3758-2020-66-1-23-28

    Article  Google Scholar 

  13. Lanier, L.L., Shades of grey – the blurring view of innate and adaptive immunity, Nature Rev. Immunol., 2013, vol. 13, p. 73. https://doi.org/10.1038/nri3389

    Article  CAS  Google Scholar 

  14. Marabelle, A., Kohrt, H., Sagiv-Barfi, I., Ajami, B., Axtell, R.C., Zhou, G., Rajapaksa, R., Green, M.R., Torchia, J., Brody, J., Luong, R., Rosenblum, M.D., Steinman, L., Levitsky, H.I., Tse, V., and Levy, R., Depleting tumorspecific T regs at a single site eradicates disseminated tumors, J. Clin. Invest., 2013, vol. 123, p. 2447. https://doi.org/10.1172/jci64859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. McGray, A.J.R., Hallett, R., Bernard, D., Swift, S.L., Zhu, Z., Teoderascu, F., Vanseggelen, H., Hassell, J.A., Hurwitz, A.A., Wan, Y., and Bramson, J.L., Immunotherapy-induced CD8+ T cells instigate immune suppression in the tumor, Mol. Ther., 2014, vol. 22, p. 206. https://doi.org/10.1038/mt.2013.255

    Article  PubMed  CAS  Google Scholar 

  16. Minakov, S.N., Morbidity and mortality from breast cancer and female genital organs (cervix, uterus, ovaries) in the Moscow region in 2015, Malignant Tumors, 2017, vol. 7, p. 67. https://doi.org/10.18027/2224-5057-2017-1-67-69

    Article  Google Scholar 

  17. Mushkarina, T.Yu. and Kuzmina, E.G., Multivariate immunity analysis highlighting the role of T-regulatory cells in radiation injuries of the lungs, Med. Acad. J., 2016, vol. 16. p. 161

    Google Scholar 

  18. Nowak, M. and Schmidt-Wolf, I.G., Natural killer T cells subsets in cancer, functional defects in prostate cancer and implications for immunotherapy, Cancers (Basel), 2011, vol. 3, p. 3661. https://doi.org/10.3390/cancers3033661

    Article  CAS  Google Scholar 

  19. Oh, S., Lee, J.H., Kwack, K., and Choi, S.W., Natural killer cell therapy: a new treatment paradigm for solid tumors, Cancers, 2019, vol. 11, p. 1534. https://dx.doi.org/10.3390%2Fcancers11101534

    Article  CAS  Google Scholar 

  20. Onishi, S., Saibara, T., Fujikawa, M., Sakaeda, H., Matsuura, Y., Matsunaga, Y., and Yamamoto, Y., Adoptive immunotherapy with lymphokine-activated killer cells plus recombinant interleukin-2 2 in patients with unresectable hepatocellular carcinoma, Hepatol., 1989, vol. 10, p. 349. https://doi.org/10.1002/hep.1840100318

    Article  CAS  Google Scholar 

  21. Perelmuter, V.M., Tashireva, L.A., Manskikh, V.N., Denisov, E.V., Savelieva, O.E., Kaygorodova, E.V., and Zavyalova, M.V., Heterogeneity and plasticity of immune-inflammatory responses in tumor microenvironment: A role in antitumor effect and tumor aggressiveness, Biol. Bull. Rev., 2017, vol. 78, p. 15.

    Google Scholar 

  22. Rotte, A., Combination of CTLA-4 and PD-1 blockers for treatment of cancer, J. Exp Clin. Cancer Res., 2019, vol. 38, p. 255. https://doi.org/10.1186/s13046-019-1259-z

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rosenberg, S.A., Lotze, M.T., Muul, L.M., Leitman, S., Chang, A.E., Ettinghausen, S.E., Matory, Y.L., Skibber, J.M., Shiloni, E., and Vetto, J.T., Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2-2 to patients with metastatic cancer, N. Engl. J. Med., 1985, vol. 313, p. 1485. https://doi.org/10.1056/nejm198512053132327

    Article  PubMed  CAS  Google Scholar 

  24. Rosenberg, S.A., Lotze, M.T., Muul, L.M., Chang, A.E., Avis, F.P., Leitman, S., Linehan, W.M., Robertson, C.N., Lee, R.E., and Rubin, J.T., A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2-2 or high-dose interleukin-2-2 alone, N. Engl. J. Med., 1987 vol. 316, p. 889. https://doi.org/10.1007/BF00262607

    Article  PubMed  CAS  Google Scholar 

  25. Samoilenko, I.V., Kharkevich, G.Y., and Demidov, L.V., Ipilimubab in therapy of metastatic melanoma, Med. Council-, 2016, vol. 10, p. 84.  https://doi.org/10.21518/2079-701X-2016-10-84-92

    Article  Google Scholar 

  26. Savchenko, A.A., Borisov, A.G., Kudryavtsev, I.V., and Moshev, A.V., Relationship of the T-regulatory cells number with the cytotoxic T-lymphocytes and NKT-cells levels in patients with renal cancer, Problems Oncol., 2017, vol. 63, p. 104.

    Article  Google Scholar 

  27. Shamova, T.V, Sitkovskaya, A.O., Vashchenko, L.N., and Kechedzhieva, E.E., Adoptive cell therapy: achievements of recent years, South Russ. J. Cancer., 2020, vol. 1, p. 43. https://doi.org/10.37748/2687-0533-2020-1-1-4

    Article  Google Scholar 

  28. Shmelyov, V.A., Lichinicer, M.R., Abramov, M.E., Kuznetsov, V.V., and Kadagidze, Z.G., Innovative antitumor cytokine drug Ingaron®, Med. Alphabet, 2013, vols. 3−4, p. 60.

    Google Scholar 

  29. Smith, N.L. and Denning, D.W., Clinical implications of interferon-γ genetic and epigenetic variants, Immunol., 2014, vol. 143, p. 499. https://dx.doi.org/10.1111%2Fimm.12362

    Google Scholar 

  30. Tabakov, D.V., Zabotina, T.N., Borunova, A.A., Korotkova, O.V., and Kadagidze, Z.G., Heterogeneity of NK and NKT lymphocyte populations in healthy donors, Med. Immun-ol., 2017, vol. 19, p. 401.

    Article  Google Scholar 

  31. Takayama, T., Sekine, T., Makuuchi, M., Yamasaki, S., Kosuge, T., Yamamoto, J., Shimada, K., Sakamoto, M., Hirohashi, S., Ohashi, Y., and Kakizoe, T., Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial, Lancet, 2000, vol. 356, p. 802. https://doi.org/10.1016/s0140-6736(00)02654-4

    Article  PubMed  CAS  Google Scholar 

  32. Une, Y., Kawata, A., Uchino, J., Adopted immunochemotherapy using IL-2 and spleen LAK cell – randomized study, Nihon Geka Gakkai Zasshi., 1991, vol. 92, p. 1330.

    PubMed  CAS  Google Scholar 

  33. Viale, R., Ware, R., Maricic, I., Chaturvedi, V., and Kumar, V., NKT cell subsets can exert opposing effects in autoimmunity, tumor surveillance and inflammation, Curr. Immunol. Rev., 2012, vol. 8, p. 287. https://doi.org/10.2174/157339512804806224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Weber, J.S., Dummer, R., de Pril, V., Lebbé, C., and Hodi, F.S., MDX010-20 investigators, Patterns of onset and resolution of immune-related adverse events of special interest with ipilimumab: detailed safety analysis from a phase 3 trial in patients with advanced melanoma, Cancer, 2013, vol. 119, p. 1675. https://doi.org/10.1002/cncr.27969

    Article  PubMed  CAS  Google Scholar 

  35. Zabotina, T.N., Korotkova, O.V., Borunova, A.A., Ocheyeva, N.Yu., Bokin, I.I., Zhordania, K.I., Panichenko, I.V., Selchuk, V.Yu., Kuznetsov, V.V., and Kadagidze, Z.G., Lymphocyte subset structure in patients with ovarian cancer, Vestn. RONTs im. N.N. Blokhina Ross. Akad. Med. Nauk, 2010, vol. 21, p. 46.

    Google Scholar 

  36. Zlatnik, E.Yu., Sitkovskaya, A.O., Nepomnya-shchaya, E.M., Dzhandigova, Ph.R., and Vashchen-ko, L.N., Achievements and prospects of cellular technologies based on the activated lymphocytes in the treatment of malignant tumors, Kazan Med. Zh., 2018, vol. 99, p. 792. https://doi.org/10.17816/KMJ2018-792

    Article  Google Scholar 

Download references

Funding

The work was carried out according to the state assignment “Development and application of new methods of cellular technologies for tumor immunotherapy” (no. АААА-А18-118072790017-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Sitkovskaya.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of compliance with standards of research involving humans as subjects. The work was approved by the Ethics Committee of the National Medical Research Centre for Oncology of the Ministry of Health of Russia (Rostov-on-Don), Protocol no. 33/1 dated November 29, 2018. Informed consent was signed with all patients to participate in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitkovskaya, A.O., Zlatnik, E.Y., Shamova, T.V. et al. Generation of Lymphokine-Activated Killers on the Background of a Decresed Content of T-regulatory Cells In Vitro. Cell Tiss. Biol. 15, 455–464 (2021). https://doi.org/10.1134/S1990519X21050102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X21050102

Keywords:

Navigation