Skip to main content
Log in

The mitochondrial genome of higher plants

  • Published:
Proceedings / Indian Academy of Sciences

Abstract

The mitochondrial genome of higher plants appears to be the largest known of any life form. Plant mitochondrial (mt) DNA displays substantial intermolecular heterogeneity with respect to size and physical organization. Electron microscopic studies reveal both linear and circular DNA molecules of varying size. Mapping data suggest that a circular master chromosome representing the entire sequence complexity of the genome gives rise to a series of discrete DNA molecules which are generated via recombination processes within certain repeats. Additionally to the large mtDNA, mitochondria of higher plants contain small plasmid-like DNAs behaving, at least in certain cases, like transpositional elements.

Plant mtDNA codes for 18S, 26S and 5S rRNAs and mitochondrial tRNAs as well as for at least 18–20 polypeptides, mainly membrane-bound components of the oxidative phosphorylation system.

Substantial evidence has been accumulated that cytoplasmic male sterility CMS, a maternally inherited trait is controlled by mtDNA. Male fertile and CMS cytoplasms differ in their mtDNA restriction patterns, in the polypeptides synthesized by their mitochondria, and in the appearance and distribution of the plasmid-like small mtDNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Attardi G 1981 Organisation and expresion of the mammalian mitochondrial genome: a lesson in economy;Trends Biochem. Sci. 6 86–89, 100–103

    Article  CAS  Google Scholar 

  • Augustyniak H, Borsuk P, Hirschler I, Stepien P P, Bartnik E 1983 MitochondrialDNA from lupine: restriction analysis and cloning of fragments coding fortRNA;Gene 22 69–74

    Article  PubMed  CAS  Google Scholar 

  • Barratt D H P, Flavell R B 1975 Alterations in mitochondria associated with cytoplasmic and nuclear genes concerned with male sterility in maize;Theor. Appl. Genet. 45 315–321

    Article  Google Scholar 

  • Belliard G, Pelletier G, Vedel F, Quetier F 1978 Morphological characteristics and chloroplastDNA distribution in different cytoplasmic parasexual hybrids ofNicotiana tabacum;Mol. Gen. Genet. 165 231–237

    Article  CAS  Google Scholar 

  • Belliard G, Vedel F, Pelletier G 1979 Mitochondrial recombination in cytoplasmic hydrids ofNicotiana tabacum by protoplast fusion;Nature (London) 281 401–403

    Article  CAS  Google Scholar 

  • Berthou F, Mathieu C, Vedel F 1983 Chloroplast and mitochondrialDNA variation as indicator of phylogenetic relationships in the genusCoffea L;Theor. Appl. Genet. 65 77–84

    Article  CAS  Google Scholar 

  • Bonen L, Gray M W 1980 Organisation and expression of the mitochondrial genome of plants. I. The genes for wheat mitochondrial ribosomal and transferDNA: evidence for an unusual arrangement;Nucl. Acids Res. 8 319–335

    Article  PubMed  CAS  Google Scholar 

  • Borck K S, Walbot V 1982 Comparison of the restriction endonuclease digestion patterns of mitochondrialDNA from normal and male sterile cytoplasms ofZea mays L;Genetics 102 109–128

    PubMed  CAS  Google Scholar 

  • Borst P, Grivell L A 1978 The mitochondrial genome of yeast;Cell 15 705–723

    Article  PubMed  CAS  Google Scholar 

  • Boutry M, Briquet M 1982 Mitochondrial modifications associated with the cytoplasmic male sterility in faba beans;Eur. J. Biochem. 127 129–135

    Article  PubMed  CAS  Google Scholar 

  • Boutry M, Briquet M, Goffeau A 1983 The α-subunit of a plant mitochondrialF 1-ATPase is translated in mitochondria;J. Biol. Chem. 258 8524–8526

    PubMed  CAS  Google Scholar 

  • Brennicke A 1980 MitochondrialDNA fromOenothera berteriana;Plant Physiol. 65 1207–1210

    Article  PubMed  CAS  Google Scholar 

  • Brennicke A, Blanz P 1982 Circular mitochondrialDNA species fromOenothera with unique sequences;Mol. Gen. Genet. 187 461–466

    Article  CAS  Google Scholar 

  • Brettell R I S, Thomas E, Ingram D S 1980 Reversion of Texas male sterile cytoplasm maize in culture to give fertile, T-toxin resistant plants;Theor. Appl. Genet. 58 55–58

    Google Scholar 

  • Brown W M, George M Jr, Wilson A C 1979 Rapid evolution of animal mitochondrialDNA;Proc. Natl. Acad. Sci. (USA) 76 1967–1971

    Article  CAS  Google Scholar 

  • Chao S, Sederoff R R, Levings III C S 1983 Partial sequence analysis of the 5S to 18SrRNA gene region of the maize mitochondrial genome;Plant Physiol. 71 190–193

    Article  PubMed  CAS  Google Scholar 

  • Dale R M K 1981 Sequence homology among different size classes of plant mitochondrialDNAS;Proc. Natl. Acid. Sci. (USA) 78 4453–4457

    Article  CAS  Google Scholar 

  • Dale R M K, Duesing J H, Keene D 1981 Supercoiled mitochondrialDNA from plant tissue culture cells;Nucl. Acids Res. 9 4583–4593

    Article  PubMed  CAS  Google Scholar 

  • Fontarnau A, Hernandez-Yago J 1982 Characterization of mitochondrialDNA in Citrus;Plant Physiol. 70 1678–1682

    Article  PubMed  CAS  Google Scholar 

  • Forde B G, Leaver C J 1979 Mitochondrial genome expression in maize: possible involvement of variant mitochondrial polypeptides in cytoplasmic male-sterility. inThe plant genome (eds) D R Davies and D A Hopwood (Norwich: John Innes Charity) pp. 131–146

    Google Scholar 

  • Forde B G, Leaver C J 1980 Nuclear and cytoplasmic genes controlling synthesis of variant mitochondrial polypeptides in male sterile maize;Proc. Natl. Acad. Sci. (USA) 77 418–422

    Article  CAS  Google Scholar 

  • Forde B G, Oliver R J C, Leaver C J 1979In vitro study of mitochondrial protein synthesis during mitochondrial biogenesis in excised plant storage tissue;Plant Physiol. 63 67–73

    Article  PubMed  CAS  Google Scholar 

  • Fox T D, Leaver C J 1981 TheZea mays mitochondrial gene coding cytochrome oxidase subunit II has an intervening sequence, and does not containTGA codons;Cell 26 315–323

    Article  PubMed  CAS  Google Scholar 

  • Gengenbach B G, Conelly J A, Pring D R, Conde M F 1981 MitochondrialDNA variation in maize plants regenerated during tissue culture selection;Theor. Appl. Genet. 59 161–167

    Article  CAS  Google Scholar 

  • Gengenbach B G, Green C E, Donovan C D 1977 Inheritance of selected pathotoxin resistance in maize plants regenerated from cell cultures;Proc. Natl. Acad. Sci. (USA) 74 5113–5117

    Article  CAS  Google Scholar 

  • Gerstel D U 1980 Cytoplasmic male sterility inNicotiana; N. Carolina Agric. Res. Ser. Tech. Bull. No 263

  • Gray M W, Bonen L, Falconet D, Huh T Y, Schnare M W, Spencer D F 1982 Mitochondrial ribosomalRNAS ofTriticum aestivum (wheat): sequence analysis and gene organization. inMitochondrial genes (eds) P Slonimski, P Borst and G Attardi (Cold Spring Harbor: CSH Lab) pp. 483–488

    Google Scholar 

  • Gray M W, Spencer D F 1983 Wheat mitochondrialDNA encodes a eubacteria-like initiator methionine transferRNA;FEBS Lett. 161 323–327

    Article  CAS  Google Scholar 

  • Guillemaut P, Weil J H 1975 Aminoacylation ofPhaseolus vulgaris cytoplasmic, chloroplastic and mitochondrialtRNAS Met by homologous and heterologous enzymes;Biochim. Biophys. Acta 407 240–248

    CAS  Google Scholar 

  • Hack E, Leaver C J 1983 The α-subunit of the maizeF 1-ATPase is synthesized in the mitochondrion;EMBO J. 2 1783–1789

    PubMed  CAS  Google Scholar 

  • Hiesel R, Brennicke A 1983 Cytochrome oxidase subunit II gene in mitochondria ofOenothera has no intron;EMBO J. 2 2173–2178

    PubMed  CAS  Google Scholar 

  • Iams K P, Sinclair J H 1982 Mapping the mitochondrialDNA ofZea mays: ribosomal gene localization;Proc. Natl. Acad. Sci. (USA) 79 5926–5929

    Article  CAS  Google Scholar 

  • Kemble R J, Bedbrook J R 1980 Low molecular weight circular and linearDNA in mitochondria from normal and male-sterileZea mays cytoplasm;Nature (London) 284 565–566

    Article  CAS  Google Scholar 

  • Kemble R J, Mans R J 1983 Examination of the mitochondrial genome of revertant progeny from SCMS maize with cloned S1 and S2 hybridization probes;J. Molec. Appl. Genet. 2 161–171

    CAS  Google Scholar 

  • Kemble R J, Mans R J, Gabay-Laughnan S, Laughnan J R 1983 Sequences homologous to episomal mitochondrialDNAS in the maize nuclear genome;Nature (London) 304 744–747

    Article  CAS  Google Scholar 

  • Kemble R J, Thompson R D 1982 S1 and S2, the linear mitochondrialDNAS present in a male sterile line of maize, possess terminally attached proteins;Nucl. Acids Res. 10 8181–8190

    Article  PubMed  CAS  Google Scholar 

  • Kim B D, Mans R J, Conde M F, Pring D R, Levings III C S 1982 Physical mapping of homologous segments of mitochondrial episomes from S male-sterile maize;Plasmid 7 1–14

    Article  PubMed  CAS  Google Scholar 

  • Kolodner R, Tewari K K 1972 Physicochemical characterization of mitochondrialDNA from pea leaves;Proc. Natl. Acad. Sci. (USA) 69 1830–1834

    Article  CAS  Google Scholar 

  • Koncz C, Sumegi J, Udvardi A, Racsmany M, Dudits D 1981 Cloning of mitochondrialDNA fragments homologous to mitochondrial S2 plasmid-likeDNA in maize;Mol. Gen. Genet. 183 449–458

    Article  CAS  Google Scholar 

  • Leaver C J, Forde B G 1980 Mitochondrial genome expression in higher plants; inGenome organisation and expression in plants (ed.) C J Leaver (New York: Plenum) pp. 407–425

    Google Scholar 

  • Leaver C J, Gray M W 1982 Mitochondrial genome organization and expression in higher plants;Annu. Rev. Plant Physiol. 33 373–402

    Article  CAS  Google Scholar 

  • Lebacq P, Vedel F 1981 Sal I restriction enzyme analysis of chloroplast and mitochondrialDNAS in the genusBrassica;Plant Sci. Lett. 23 1–9

    Article  CAS  Google Scholar 

  • Levings III C S 1983 The plant mitochondrial genome and its mutants;Cell 32 659–661

    Article  PubMed  Google Scholar 

  • Levings III C S, Kim B D, Pring D R, Conde M F, Mans R J, Laughnan J R, Gabay-Laughnan S J 1980 Cytoplasmic reversion ofCMS-S in maize: association with a transpositional event;Science 209 1021–1023

    Article  PubMed  CAS  Google Scholar 

  • Levings III C S, Sederoff R R 1983 Nucleotide sequence of the S-2 mitochondrialDNA from the S cytoplasm of maize;Proc. Natl. Acad. Sci. (USA) 80 4055–4059

    Article  CAS  Google Scholar 

  • Levings III C S, Sederoff R R, Hu W W L, Timothy D H 1983 Relationships among plasmid-likeDNAS of the maize mitochondria; inStructure and function of plant genomes (eds) O Ciferri and L Dure III (New York: Plenum) pp. 363–371

    Google Scholar 

  • Levings III C S, Shaw D M, Hu W W L, Pring D R, Timothy D H 1979 Molecular heterogeneity among mitochondrialDNAS from different maize cytoplasms; inExtrachromosomal DNA. ICN-UCLASymp. Molec. Cell. Biol. New York pp. 63–73

  • Lonsdale D M, Hodge T P, Fauron C M-R, Flavell R B 1983 A predicted structure for the mitochondrial genome from the fertile cytoplasm of maize; inPlant molecular biology (ed) R B Goldberg (New York: Alan R Liss Inc.) pp. 445–456

    Google Scholar 

  • Mathews D E P, Gegory P, Gracen V E 1979 Helminthosporium maydis race T toxin induces leakage ofNAD + from T-cytoplasm corn mitochondria;Plant Physiol. 63 1149–1153

    Article  Google Scholar 

  • Miller R J, Koeppe D E 1971 Southern corn leaf blight: susceptible and resistant mitochondria;Science 173 67–69

    Article  PubMed  CAS  Google Scholar 

  • Negruk V I, Cherny D I, Nikiforowa I D, Aleksandrow A A, Butenko R G 1982 Isolation and characterization of minicircularDNAS found in mitochondrial fraction ofVicia faba;FEBS Lett 142 115–117

    Article  CAS  Google Scholar 

  • Negruk V I, Nikiforowa I D, Butenko R G 1981 Electrophoretical analysis ofVicia faba mitochondrialDNA (Russ.);Dokl. Akad. Nauk SSSR 260 1018–1021

    CAS  Google Scholar 

  • Nikiforowa I D, Negruk V I 1983 Comparative electrophoretical analysis of plasmid-like mitochondrialDNAS inVicia faba and in some other legumes;Planta 157 81–84

    Article  Google Scholar 

  • Palmer J D, Shields C R 1984 Tripartite structure of theBrassica campestris mitochondrial genome;Nature (London) 307 437–440

    Article  CAS  Google Scholar 

  • Palmer J D, Shields C R, Cohen D B, Orton T J 1983 An unusual mitochondrialDNA plasmid in the genusBrassica;Nature (London) 301 725–728

    Article  CAS  Google Scholar 

  • Pelletier G, Primard C, Vedel F, Chetrit P, Remy R, Rouselle P, Renard M 1983 Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion;Mol. Gen. Genet. 191 244–250

    Article  CAS  Google Scholar 

  • Powling A 1981 Species of smallDNA molecules found in mitochondria from sugarbeet with normal and male sterile cytoplasms;Mol. Gen. Genet. 183 82–84

    Article  CAS  Google Scholar 

  • Powling A 1982 Restriction endonuclease analysis of mitochondrialDNA from sugarbeet with normal and male sterile cytoplasms;Heredity 49 117–120

    Article  CAS  Google Scholar 

  • Pring D R, Conde M F, Schertz K F, Levings III C S 1982 Plasmid-likeDNAS associated with mitochondria of cytoplasmic male-sterile sorghum;Mol. Gen. Genet. 186 180–184

    Article  CAS  Google Scholar 

  • Pring D R, Levings III C S 1978 Heterogeneity of maize cytoplasmic genomes among male-sterile cytoplasms;Genetics 89 121–136

    PubMed  CAS  Google Scholar 

  • Pring D R, Levings III C S, Conde M F 1979 The organelle genomes of cytoplasmic male-sterile maize and sorghum. inThe plant genome (eds) D R Davies and D A Hopwood (Norwich: John Innes Charity) pp. 111–120

    Google Scholar 

  • Pring D R, Levings III C S, Hu W W L, Timothy D H 1977 UniqueDNAS associated with mitochondria in the S-type cytoplasm of male-sterile maize;Proc. Natl. Acad. Sci. (USA) 74 2904–2908

    Article  CAS  Google Scholar 

  • Quetier F, Vedel F 1977 Heterogenous population of mitochondrialDNA molecules in higher plants;Nature (London) 268 365–368

    Article  CAS  Google Scholar 

  • Quetier F, Vedel F 1980 Physicochemical and restriction endonuclease analysis of mitochondrialDNA from higher plants. inGenome organisation and expression in plants (ed) C J Leaver (New York: Plenum) pp. 401–406

    Google Scholar 

  • Sparks R B Jr, Dale R M K 1980 Characterization of3H-labelled supercoiled mitochondrialDNA from tobacco suspension culture cells;Mol. Gen. Genet. 180 351–355

    Article  CAS  Google Scholar 

  • Spruill W M Jr, Levings III C S, Sederoff R R 1980 RecombinantDNA analysis indicates that the multiple chromosomes of maize mitochondria contain different sequences;Dev. Genet. 1 363–378

    Article  CAS  Google Scholar 

  • Stern D B, Dyer T A, Lonsdale D M 1982 Organization of the mitochondrial ribosomalRNA genes of maize;Nucl. Acids Res. 10 3333–3340

    Article  PubMed  CAS  Google Scholar 

  • Stern D B, Lonsdale D M 1982 Mitochondrial and chloroplast genomes of maize have a 12-kilobaseDNA sequence in common;Nature (London) 299 698–702

    Article  CAS  Google Scholar 

  • Synenki R M, Levings III C S, Shaw D M 1978 Physicochemical characterization of mitochondrialDNA from soybean;Plant Physiol. 61 460–464

    Article  PubMed  CAS  Google Scholar 

  • Thompson R D, Kemble R J, Flavell R B 1980 variation in mitochondrialDNA organisation between normal and male-sterile cytoplasms of maize;Nucl. Acids Res. 8 1999–2008

    Article  PubMed  CAS  Google Scholar 

  • Vedel F, Quetier F 1974 Physicochemical characterisation of mitochondrialDNA from potato tubers;Biochim. Biophys. Acta 340 374–378

    PubMed  CAS  Google Scholar 

  • Vedel F, Quetier F, Cauderon Y, Dosba F, Doussinault G 1981 Studies on maternal inheritance in polyploid wheats with cytoplasmicDNAS as genetic markers;Theor. Appl. Genet. 59 239–245

    Google Scholar 

  • Vedel F, Mathieu C, Lebacq P, Ambard-Bretteville F, Remy R 1982 Comparative macromolecular analysis of the cytoplasms of normal and cytoplasmic male sterileBrassica napus;Theor. Appl. Genet. 62 255–262

    CAS  Google Scholar 

  • Wallace D C 1982 Structure and evolution of organelle genomes;Microbiol. Rev. 46 208–240

    PubMed  CAS  Google Scholar 

  • Ward B L, Anderson R S, Bendich A J 1981 The size of the mitochondrial genome is large and variable in a family of plants (Cucurbitaceae);Cell 25 793–803

    Article  PubMed  CAS  Google Scholar 

  • Weissinger A K, Timothy D H, Levings III C S, Hu W W L, Goodman M M 1982 Unique plasmid-like mitochondrialDNAS from indigenous maize races of Latin America;Proc. Natl. Acad. Sci. (USA) 79 1–5

    Article  CAS  Google Scholar 

  • Wells R, Ingle J 1970 The constancy of the buoyant density of chloroplast and mitochondrialDNA in a range of higher plants;Plant Physiol. 46 178–179

    Article  PubMed  CAS  Google Scholar 

  • Wong F Y, Wildman S G 1972 Simple procedure for isolation of satelliteDNAS from tobacco leaves in high yield and demonstration of minicircles;Biochim. Biophys. Acta 259 5–12

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weihe, A., Börner, T. The mitochondrial genome of higher plants. Proc. Indian Acad. Sci. 93, 305–316 (1984). https://doi.org/10.1007/BF03053084

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03053084

Keywords

Navigation