American Potato Journal

, Volume 67, Issue 7, pp 443–459 | Cite as

The effect of ethylene and abscisic acid on symptom expression of bacterial ring rot in eggplant and potato

  • Chester J. Kurowski
  • Neil C. Gudmestad


Studies were performed to determine the effect that plant hormones involved with plant senescence (i.e., ethylene and abscisic acid) and photoperiod have on disease development and symptom expression of bacterial ring rot (BRR) caused byCorynebacterium sepedonicum (Spieck & Kotth.) Skapt & Burkh. Potato plants were grown either under a long (14 hr.) or short (10 hr.) photoperiod, while eggplants were grown only under a short (10 hr.) photoperiod. Disease severity ratings of BRR were found to be significantly higher (P=0.05) on potato plants grown under a short photoperiod compared to a long photoperiod. Plant heights of BRR infected plants were found to be significantly greater under the long photoperiod. Endogenous levels of ethylene were found to be significantly (P=0.05) greater in inoculated potato plants grown under a long photoperiod than inoculated plants grown under a short photoperiod. Results suggest that the plant hormones ethylene and abscisic acid do not significantly affect the disease development and symptom expression of BRR.

Additional key words

Corynebacterium sepedonicum ethephon silver thiosulphate indole-acetic acid photoperiod 


Se llevaron a cabo estudios para determinar el efecto que tienen las hormonas vegetales involucradas en la senescencia de las plantas ( el etileno y el ácido abscísico) y en el fotoperiodo sobre el desarrollo y expresión de sÍntomas de la pudrición anular bacteriana (BRR) causada porCorynebacterium sepedonicum (Spieck & Kotth.) Skapt and Burkh. Las plantas de papa crecieron bajo un fotoperiodo largo (14 hr) o corto (10 hr), mientras que las de berenjena crecieron solamente bajo un fotoperiodo corto (10 hr). Se encontró que los grados de severidad de la pudrición fueron significativamente mayores (P = 0,05) sobre las plantas de papa crecidas bajo un fotoperiodo corto en comparación con un fotoperiodo largo. Las alturas de las plantas infectadas con BRR fueron significativamente mayores bajo el fotoperiodo largo. Se encontró que los niveles endógenos de etileno fueron significativamente (P=0,05) mayores en las plantas de papa inoculadas y crecidas bajo un fotoperiodo largo que en las que crecieron bajo un fotoperiodo corto. Los resultados sugieren que las hormonas vegetales etileno y ácido abscÍsico no afectan significativamente el desarrollo y la expresión de sÍntomas de la pudrición anular bacteriana (BRR).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Achilea, O., E. Chalutz, Y. Fuchs and I. Rot. 1985. Ethylene biosynthesis and related physiolgocial changes inPénicillium digitatum-infected grapefruit (Citrus paradisi). Phys Plant Pathology 26:125–134.CrossRefGoogle Scholar
  2. 2.
    Ben-Yehoshua, S. and B. Aloni. 1974. Effect of water stress on ethylene production by detached leaves of valencia orange (Citrus sinensis Osbeck). Plant Physiology 53:863–865.CrossRefGoogle Scholar
  3. 3.
    Beyer, E.M., Jr. 1976. A potent inhibitor of ethylene action in plants. Plant Physiology 58:268–271.CrossRefGoogle Scholar
  4. 4.
    Bishop, A.L. and S.A. Slack. 1987. Effect of cultivar, inoculum dose and strain ofClavibacter michiganese subsp.sepedonicum on symptom development in potatoes. Phytopathology 77:1085–1089.CrossRefGoogle Scholar
  5. 5.
    Bishop, A.L. and S.A. Slack. 1987. Effect of inoculum dose and preparation, strain variation, and plant growth conditions on the eggplant assay for bacterial ring rot. Am Potato J 64:227–234.CrossRefGoogle Scholar
  6. 6.
    Coleman, L.W. and C.F. Hodges. 1987. Ethylene biosynthesis inPoa pratensis leaves in response to injury or infection byBipolaris sorokiniana. Phytopathology 77:1280–1283.CrossRefGoogle Scholar
  7. 7.
    Dimond, A.E. and P.E. Waggoner. 1953. The cause of epinastic symptoms in fusarium wilt of tomatoes. Phytopathology 43:663–669.Google Scholar
  8. 8.
    Freebairn, H.T. and I.W. Buddenhagen. 1964. Ethylene production byPseudomonas solanacearum. Nature, Lond. 202:313–314.CrossRefGoogle Scholar
  9. 9.
    Garner, W.W. and H.A. Allard. 1923. Further studies in photoperiodism, the response of the plant to relative length of day and night. J of Agri Res 23:871–920.Google Scholar
  10. 10.
    Goodman, R.N., Z. Kiraly and K.R. Wood. 1986. The Biochemistry and Physiology of Plant Disease, p. 245–286. University of Missouri Press, Columbia.Google Scholar
  11. 11.
    Goto, M., Y. Ishida, Y. Takikawa and H. Hydoo. 1985. Ethylene production by the Kudzu strains ofPseudomonas syringae pv.phaseolicola causing halo blight inPueramia lobata (wild) Ohw: Plant Cell Physiology 26:141–150.Google Scholar
  12. 12.
    12. Kefeli, V.I. and Ch. Sh. Kayrov. 1971. Natural growth inhibitors, their chemical and physiological properties. Ann Rev of Plant Physiology 22:185–196.CrossRefGoogle Scholar
  13. 13.
    Logsden, C.E. 1967. Effect of soil temperature on potato ring rot. Am Potato J 44:281–286.CrossRefGoogle Scholar
  14. 14.
    Lund, B.M. and L.W Mapson. 1970. Stimulation byErwinia carotovora of the synthesis of ethylene in cauliflower tissue. Biochem Journal 119:251–263.CrossRefGoogle Scholar
  15. 15.
    Mapson, L.W and A.C. Hulme. 1970. The biosynthesis, physiological effects and mode of action of ethylene. In ‘Progess in Phytochemistry’ (Eds. L. Reinhold and Y. Liwschitz) Vol. 2:343–384. Interscience Publishers, London.Google Scholar
  16. 16.
    McMichael, B.L., W.R. Jordan and R.D. Powell. 1972. An effect of water stress on ethylene production by intact cotton petioles. Plant Physiology 49:658–660.CrossRefGoogle Scholar
  17. 17.
    Melis, R.J.M. and J. van Staden. 1984. Tuberization and hormones. Z. Pflanzenphysiol Bd 113 S pp. 271–283.CrossRefGoogle Scholar
  18. 18.
    Nelson, G.A. 1980. Long term survivial ofC. sepedonicum on contaminated surfaces and in infected potato stems. Am Potato J 57:595–600.CrossRefGoogle Scholar
  19. 19.
    Nelson, G.A. and G.C. Kozub. 1983. Effect of total light energy on symptoms and growth of ring rot-infected red pontiac potato plants. Am Potato J 60:461–468.CrossRefGoogle Scholar
  20. 20.
    Nelson, G.A., W.E. Torfason and F.R. Harper. 1971. Comparison of inoculation methods on ring rot development in potatoes. Am Potato J 48:225–229.CrossRefGoogle Scholar
  21. 21.
    21. Pratt, H.K. and J.D. Goeschl. 1969. Physiological roles of ethylene in plants. Ann Rev of Plant Physiology 20:541–584.CrossRefGoogle Scholar
  22. 22.
    Reid, M.S., J.L. Paul, M.B. Farhoomand, A.K. Kofranek and G. L. Staby. 1980. Pulse treatments with the silver thiosulphate complex extend the vase-life of cut carnations. J Am Soc Hortic Sci, 105:25–27.Google Scholar
  23. 23.
    Sequeira, L. 1973. Hormone metabolism in diseased plants. Ann Rev of Plant Physiology Vol. 24:353–380.CrossRefGoogle Scholar
  24. 24.
    Schaad, N.W. 1988. Initial identification of common genera, page 3,In: Laboratory guidefor identification of plant pathogenic bacteria, 2nd edition. N.W. Schaad, editor. APS Press 164 pp.Google Scholar
  25. 25.
    Slack, S.A. and A.L. Bishop. 1984. Bacterial ring rot of potato: A perspective of disease diagnosis and control in North America. Proc No Amer Seed Po Seminar 2:13–26.Google Scholar
  26. 26.
    Stall, R.E. and C.B. Hall. 1984. Chlorosis and ethylene production in pepper leaves infected byXanthomonas campestris pv.vesicatoria. Phytopathology 74:373–375.CrossRefGoogle Scholar
  27. 27.
    Steadman, J.R. and L. Sequeira. 1970. Abscisic acid in tobacco plants. Tentative identification and its relation to stunting induced byPseudomonas solanacearum. Plant Physiology 45:691–697.CrossRefGoogle Scholar
  28. 28.
    Veen, H. 1983. Silver thiosulphate: an experimental tool in plant science. Scientia Horticulturae 20:211–224.CrossRefGoogle Scholar
  29. 29.
    Wareing, P.F. and I.D.J. Phillips. 1981. Growth and differentiation in plants. 3rd Edition. Peragamon Fress. Pgs. 143–148.Google Scholar
  30. 30.
    Wareing, P.F. and A.M.V. Jennings. 1979. The hormonal control of tuberization in potato.In: F. Skoog (Ed.) Plant Growth Substances pp. 293–300 Proc 10th Int Conf Springer Verlag, Berlin.Google Scholar
  31. 31.
    Wiese, M.V. and J.E. DeVay. 1970. Growth regulator changes in cotton associated with defoliation caused byVerticillium albo-atrum. Plant Physiology 45:304–309.CrossRefGoogle Scholar

Copyright information

© Springer 1990

Authors and Affiliations

  • Chester J. Kurowski
    • 2
  • Neil C. Gudmestad
    • 1
  1. 1.Dept. of Plant PathologyNorth Dakota State UniversityFargo
  2. 2.Dept. of Botany/Plant PathologyUniversity of MaineOrono

Personalised recommendations