Skip to main content
Log in

The relation of contractile function to myocardial perfusion

Die Beziehung zwischen myokardialer kontraktiler Funktion und Perfusion. „Perfusion-Contraction-Match” und „-Mismatch”

Perfusion-contraction match and mismatch

  • Published:
Herz Aims and scope Submit manuscript

Abstract

Duringnormoperfusion, both myocardial blood flow and contractile function are heterogeneously distributed throughout the left ventricle. Midwall segment shortening is greater at the apex than at the base of the left ventricle, and greater in the anterior than in the posterior wall. Also, transmural heterogeneity of myocardial deformation exists, with greater segment shortening and wall thickening in inner than in outer myocardial layers. Myocardial blood flow is greater in inner than in outer myocardial layers. Apart from transmural heterogeneities, there are adjacent regions with largely different resting flow in the same heart. While an increase in myocardial contractile function will lead to a metabolically mediated increase in myocardial blood, an increase in regional coronary perfusion within or above the autoregulatory range does not increase regional myocardial contractile function.

During hypoperfusion induced by a proximal coronary stenosis, the reduction in subendocardial blood flow is more pronounced than that in subepicardial blood flow, and contractile function in the inner myocardial layers caases more rapidly than in the outer myocardial layers. The reduced regional myocardial contractile function is closely matched to the reduced regional myocardial blood flow; however, such a coupling between reduced flow and function is lost when ischemia is prolonged for several hours in that function for a given flow is further reduced. Also, acute embolization of the coronary microcirculation induces a progressive loss of regional myocardial function at an unchanged regional myocardial blood flow, i. e. perfusion-contraction mismatch.

Duringreperfusion, regional myocardial contractile function remains depressed for a prolonged period of time, depending on the severity, duration and location of the preceding ischemic epsiode, while regional myocardial blood flow is restored to almost normal. Recovery of contractile function in the outer myocardial layers is faster than in the inner myocardial layers.

Zusammenfassung

WährendNormoperfusion sind sowohl die regionale myokardiale Durchblutung als auch die regionale myokardiale Funktion innerhalb des linken Ventrikels heterogen verteilt. Die mittmyokardiale Segmentlängenver-kürzung ist an der Herzspitze größer als an der Herzbasis und in der Vorderwand größer als in der Hinterwand. Ebenso bestehen transmurale Unterschiede in der Deformation; die Segmentlängenverkürzung und Wandverdickung in den Innenschichten sind größer als die in den Außenschichten. Die Myokarddurchblutung ist ebenfalls in den Innenschichten höher als in den Außenschichten, und es bestehen große Unterschiede in der Ruhedurchblutung zwischen benach-barten Myokardarealen. Während eine Steigerung der regionalen myokardialen Funktion die Myokarddurchblutung erhöht, ist eine Zunahme der regionalen Koronarperfusion innerhalb des autoregulatorischen Bereichs nicht mit einer Zunahme der regionalen myokardialen Funktion verbunden. Während einerMinderdurchblutung durch eine proximale Koronarstenose nimmt die Durchblutung der Innenschichten stärker als die der Außenschichten ab, und die regionale myokardiale Funktion der Innenschichten ist früher als die der Außenschichten reduziert. Die Abnahme der regionalen myokardialen Funktion ist dabei eng an die Reduktion der regionalen myokardialen Durchblutung gekoppelt („perfusion-contraction match”); diese enge Kopplung geht jedoch bei Fortbestehen der Ischämie verloren, insofern die regionale myokardiale Funktion bei unveränderter Durchblutung weiter abnimmt. Ebenso induziert eine akute Mikroembolisation der koronaren Mikrozirkulation einen kontinuierlichen Verlust der regionalen myokardialen Funktion bei unveränderter regionaler myokardialer Durchblutung, das heißt, es besteht ein Ungleichgewicht zwischen Durchblutung und Funktion („perfusion-contraction mismatch”).

WährendReperfusion bleibt die regionale myokardiale Funktion für einen längeren Zeitraum-in Abhängigkeit von Schweregrad, Dauer und Lokalisation der Durchblutungsreduktion während Ischämie—reduziert, obwohl die regionale myokardiale Durchblutung nahezu vollständig normalisiert ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio G, Betocchi S, Pace L, et al. Prolonged impairment of regional contractile function after resolution of exercise-induced angina. Evidence of myocardial stunning in patients with coronary artery disease. Circulation 1996;94:2455–64.

    PubMed  CAS  Google Scholar 

  2. Arai AE, Pantely GA, Anselone CG, et al. Active downregulation of myocardial energy requirements during prolonged moderate ischemia in swine. Circ Res 1991;69:1458–69.

    PubMed  CAS  Google Scholar 

  3. Austin RE, Aldea GS, Coggins DL, et al. Profound spatial heterogeneity of coronary reserve. Discordance between patterns of resting and maximal myocardial blood flow. Circ Res 1990;67:319–31.

    PubMed  Google Scholar 

  4. Bolli R. Mechanism of myocardial “stunning”. Circulation 1990; 82:723–38.

    PubMed  CAS  Google Scholar 

  5. Bolli R, Patel BS, Hartley CJ, et al. Nonuniform transmural recovery of contractile function in stunned myocardium. Am J Physiol 1989;257:H375–85.

    PubMed  CAS  Google Scholar 

  6. Bolli R, Triana JF, Jeroudi MO. Prolonged impairment of coronary vasodilation after reversible ischemia. Circ Res 1990;67: 332–43.

    PubMed  CAS  Google Scholar 

  7. Bolli R, Zhu W-X, Thornby JI, et al. Time course and determinants of recovery of function after reversible ischemia in conscious dogs. Am J Physiol 1988;254:H102–14.

    PubMed  CAS  Google Scholar 

  8. Canty JM. Coronary pressure-function and steady-state pressure-flow relations during autoregulation in the unanesthetized dog. Circ Res 1988;63:821–36.

    PubMed  Google Scholar 

  9. Dörge H, Behrends M, Neumann T, et al. Perfusion-contraction mismatch with coronary microvascular obstruction. J Mol Cell Cardiol 1999;31:A58.

    Google Scholar 

  10. Fedele FA, Gewirtz H, Capone RJ, et al. Metabolic response to prolonged reduction of myocardial blood flow distal to a severe coronary artery stenosis. Circulation 1988;78:729–35.

    PubMed  CAS  Google Scholar 

  11. Franzen D, Conway RS, Zhang H, et al. Spatial heterogeneity of local blood flow and metabolic content in dog hearts. Am J Physiol 1988;254:H344–53.

    PubMed  CAS  Google Scholar 

  12. Gallagher KP, Matsuzaki M, Koziol JA, et al. Regional myocardial perfusion and wall thickening during ischemia in conscious dogs. Am J Physiol 1984;247:H727–38.

    PubMed  CAS  Google Scholar 

  13. Gallagher KP, Matsuzaki M, Osakada G, et al. Effect of exercise on the relationship between myocardial blood flow and systolic wall thickening in dogs with acute coronary stenosis. Circ Res 1983;52:716–29.

    PubMed  CAS  Google Scholar 

  14. Gallagher KP, Osakada G, Hess OM, et al. Subepicardial segmental function during coronary stenosis and the role of myocardial fiber orientation. Circ Res 1982;50:352–9.

    PubMed  CAS  Google Scholar 

  15. Gallagher KP, Osakada G, Matsuzaki M, et al. Nonuniformity of inner and outer systolic wall thickening in conscious dogs. Am J Physiol 1985;249:H241–8.

    PubMed  CAS  Google Scholar 

  16. Guth BD, Martin JF, Heusch G, et al. Regional myocardial blood flow, function and metabolism using phosphrus-31 nuclear magnetic resonance spectroscopy during ischemia and reperfusion. J Am Coll Cardiol 1987;10:673–81.

    Article  PubMed  CAS  Google Scholar 

  17. Heusch G. Hibernating myocardium. Physiol Rev 1998;78:1055–85.

    PubMed  CAS  Google Scholar 

  18. Heusch G, Ferrari R, Hearse DJ, et al. Review: Myocardial hibernation —questions and controversies. Cardiovasc Res 1997;36: 301–9.

    Article  PubMed  CAS  Google Scholar 

  19. Heusch G, Guth BD, Gilpin E, et al. Determinants of recovery of regional contractile function after exercise-induced ischemia in conscious dogs. Fed Proc 1987;46:834. abstract.

    Google Scholar 

  20. Heusch G, Schulz R. Myocardial function during and after myocardial ischemia. J Cardiovasc Pharmacol 1996;28:Suppl 2:S9–24.

    Google Scholar 

  21. Heyndrickx GR, Baig H, Nellens P, et al. Depression of regional blood flow and wall thickening after brief coronary occlusions. Am J Physool 1978;234:H653–9.

    CAS  Google Scholar 

  22. Heyndrickx GR, Millard RW, McRitchie RJ, et al. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 1975;56:978–85.

    Article  PubMed  CAS  Google Scholar 

  23. Indolfi C, Guth BD, Miura T, et al. Mechanisms of improved ischemic regional dysfunction by bradycardia. Studies on UL-FS 49 in swine. Circulation 1989;80:983–93.

    PubMed  CAS  Google Scholar 

  24. Laxson DD, Homans DC, Dai X-Z, et al. Oxygen consumption and coronary reactivity in postischemic myocardium. Circ Res 1989;64:9–20.

    PubMed  CAS  Google Scholar 

  25. Lew WYW, LeWinter MM. Regional comparison of midwall segment and area shortening in the canine left ventricle. Circ Res 1986;58:678–91.

    PubMed  CAS  Google Scholar 

  26. LeWinter MM, Kent RS, Kroener JM, et al. Regional differences in myocardial performance in the left ventricle of the dog. Circ Res 1975;37:191–9.

    PubMed  CAS  Google Scholar 

  27. Martin C, Schulz R, Rose J, et al. Inorganic phosphate content and free energy change of ATP hydrolysis in regional short-term hibernating myocardium. Cardiovasc Res 1998;39:318–26.

    Article  PubMed  CAS  Google Scholar 

  28. Matsuzaki M, Gallagher KP, Kemper WS, et al. Sustained regional dysfunction produced by prolonged coronary stenosis: gradual recovery after reperfusion. Circulation 1983;68:170–82.

    PubMed  CAS  Google Scholar 

  29. Matsuzaki M, Guth BD, Tajimi T, et al. Effects of the combination of diltiazem and atenolol on exercise-induced regional myocardial ischemia in conscious dogs. Circulation 1985;72:233–43.

    PubMed  CAS  Google Scholar 

  30. Matsuzaki M, Patritti J, Tajimi T, et al. Effects of β-blockade on regional myocardial flow and function during exercise. Am J Physiol 1984;247:H52–60.

    PubMed  CAS  Google Scholar 

  31. Pantely GA, Malone SA, Rhen WS, et al. Regeneration of myocardial phosphocreatine in pigs despite continued moderate ischemia. Circ Res 1990;67:1481–93.

    PubMed  CAS  Google Scholar 

  32. Reimer KA, Jennings RB. The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 1979;40:633–44.

    PubMed  CAS  Google Scholar 

  33. Reimer KA, Lowe JE, Rasmussen MM, et al. The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 1977;56: 786–94.

    PubMed  CAS  Google Scholar 

  34. Ross Jr J. Mechanisms of regional ischemia and antianginal drug action during exercise. Prog Cardiovasc Dis 1989;31:455–66.

    Article  PubMed  Google Scholar 

  35. Ross Jr J. Myocardial perfusion-contraction matching. Implications for coronary heart disease and hibernation. Circulation 1991;83:1076–83.

    PubMed  Google Scholar 

  36. Sasayama S, Franklin D, Ross Jr J, et al. Dynamic changes in left ventricular wall thickness and their use in analyzing cardiac function in the conscious dog. Am J Cardiol 1976;38:870–9.

    Article  PubMed  CAS  Google Scholar 

  37. Schulz R, Guth BD, Pieper K, et al. Recruitment of an inotropic reserve in moderately ischemic myocardium at the expense of metabolic recovery:a model of short-term hibernation. Circ Res 1992;70:1282–95.

    PubMed  CAS  Google Scholar 

  38. Schulz R, Post H, Dörge H, et al. Structural and metabolic outcome of prolonged moderate ischemia in pigs. Circulation 1998; 98:I-144. abstract.

    Google Scholar 

  39. Sonntag M, Deussen A, Schultz J, et al. Spatial heterogeneity of blood flow in the dog heart. I. Glucose uptake, free adenosine and oxidative/glycolytic enzyme activity. Pflügers Arch 1996;432: 439–50.

    Article  PubMed  CAS  Google Scholar 

  40. Stahl LD, Weiss HR, Becker LC. Myocardial oxygen consumption, oxygen supply/demand heterogeneity, and microvascular patency in regionally stunned myocardium. Circulation 1988;77:865–72.

    PubMed  CAS  Google Scholar 

  41. Thaulow E, Guth BD, Heusch G, et al. Characteristics of regional myocardial stunning after exercise in dogs with chronic coronary stenosis. Am J Physiol 1989;257:H113–9.

    PubMed  CAS  Google Scholar 

  42. Theroux P, Franklin D, Ross Jr J, et al. Regional myocardial function during acute coronary artery occlusion and its modification by pharmacological agents in the dog. Circ Res 1974;35: 896–908.

    PubMed  CAS  Google Scholar 

  43. Vatner SF. Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ Res 1980;47: 201–7.

    PubMed  CAS  Google Scholar 

  44. Villarreal FJ, Lew WYW, Waldman LK, et al. Transmural myocardial deformation in the ischemic canine left ventricle. Circ Res 1991;68:368–81.

    PubMed  CAS  Google Scholar 

  45. Waldman LK, Nosan D, Villarreal F, et al. Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ Res 1988;63:550–62.

    PubMed  CAS  Google Scholar 

  46. Weintraub WS, Hattori S, Agarwal JB, et al. The relationship between myocardial blood flow and contraction by myocardial layer in the canine left ventricle during ischemia. Circ Res 1981;48:430–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Heusch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heusch, G., Schulz, R. The relation of contractile function to myocardial perfusion. Herz 24, 509–514 (1999). https://doi.org/10.1007/BF03044221

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03044221

Key Words

Schlüsselwörter

Navigation