Skip to main content
Log in

Active exchange of water and nutrients between seawater and shallow pore water in intertidal sandflats

  • Article
  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

In order to determine the temporal and spatial variations of nutrient profiles in the shallow pore water columns (upper 30 cm depth) of intertidal sandflats, we measured the salinity and nutrient concentrations in pore water and seawater at various coastal environments along the southern coast of Korea. In the intertidal zone, salinity and nutrient concentrations in pore water showed marked vertical changes with depth, owing to the active exchange between the pore water and overlying seawater, while they are temporally more stable and vertically constant in the sublittoral zone. In some cases, the advective flow of fresh groundwater caused strong vertical gradients of salinity and nutrients in the upper 10 cm depth of surface sediments, indicating the active mixing of the fresher groundwater with overlying seawater. Such upper pore water column profiles clearly signified the temporal fluctuation of lower-salinity and higher-Si seawater intrusion into pore water in an intertidal sandflat near the mouth of an estuary. We also observed a semimonthly fluctuation of pore water nutrients due to spring-neap tide associated recirculation of seawater through the upper sediments. Our study shows that the exchange of water and nutrients between shallow pore water and overlying seawater is most active in the upper 20 cm layer of intertidal sandflats, due to physical forces such as tides, wave set-up, and density-thermal gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boehm, A.B., A. Paytan, G.G. Shellenbarger, and K.A. Davis. 2006. Composition and flux of groundwater from a California beach aquifer: Implications for nutrient supply to the surf zone.Cont. Shelf Res.,26, 269–282.

    Article  Google Scholar 

  • Burnett, W.C., H. Bokuniewicz, M. Huettel, W.S. Moore, and M. Taniguchi. 2003. Groundwater and pore water inputs to the coastal zone.Biogeochem.,66, 3–33.

    Article  Google Scholar 

  • Burnett, W.C., P.K. Aggarwal, A. Aureli, H. Bokuniewicz, J.E. Cable, M.A. Charette, E. Kontar, S. Krupa, K.M. Kulkarni, A. Loveless, W.S. Moore, J.A. Oberdorfer, J. Oliveira, N. Ozyurt, P. Povinec, A.M.G. Privitera, R. Rajar, R.T. Ramessur, J. Scholten, T. Stieglitz, M. Taniguchi, and J.V. Turner. 2006. Quantifying submarine groundwater discharge in the coastal zone via multiple methods.Sci. Total Environ.,367, 498- 543.

    Article  Google Scholar 

  • Burnett, W.C., G. Wattayakorn, M. Taniguchi, H. Dulaiova, P. Sojisuporn, S. Rungsupa, and T. Ishitobi. 2007. Groundwaterderived nutrient inputs to the upper Gulf of Thailand.Cont. Shelf Res.,27, 176–190.

    Article  Google Scholar 

  • Cable, J.E., J.B. Martin, P.W. Swarzenski, M.K. Lindenberg, and J. Steward. 2004. Advection within shallow pore waters of a coastal lagoon, Florida.Ground Water,42, 1011–1020.

    Article  Google Scholar 

  • Charette, M.A., K.O. Buesseler, and J.E. Andrews. 2001. Utility of radium isotopes for evaluating the input and transport of groundwater-derived nitrogen to a Cape Cod estuary.Limnol. Oceanogr.,46, 456–470.

    Article  Google Scholar 

  • Charette, M.A. and E.R. Sholkovitz. 2006. Trace element cycling in a subterranean estuary: Part 2. Geochemistry of the pore water.Geochim. Cosmochim. Acta,70, 811–826.

    Article  Google Scholar 

  • Charette, M.A., E.R. Sholkovitz, and C.M. Hansel. 2005. Trace element cycling in a subterranean estuary: Part 1. Geochemistry of the permeable sediments.Geochim. Cosmochim. Acta,69, 2095–2109.

    Article  Google Scholar 

  • Corbett, D.R., J. Chanton, W.C. Burnett, K. Dillon, C. Rutkowski, and J.W. Fourqurean. 1999. Patterns of groundwater discharge into Florida Bay.Limnol. Oceanogr.,44, 1045–1055.

    Google Scholar 

  • Dolphin, T.J., T.M. Hume, and K.E. Parnell. 1995. Oceanographic processes and sediment mixing on a sand flat in an enclosed sea, Manukau Harbor, New Zealand.Mar. Geol.,128, 169–181.

    Article  Google Scholar 

  • Garrson, G.H., C.R. Glenn, and G.M. McMurtry. 2003. Measurement of submarine groundwater discharge in Kahana Bay, O’ahu, Hawaii.Limnol. Oceanogr.,48, 920–928.

    Google Scholar 

  • Huettel, M. and I.T. Webster. 2001. Porewater flow in permeable sediments. p.144–179. In:the benthic boundary layer - transport processes and biogeochemistry, ed. by B.P. Boudreau and B.B. Jorgensen. Oxford University Press, London.

    Google Scholar 

  • Hwang, D.W., Y.W. Lee, and G. Kim. 2005. Large submarine groundwater discharge and benthic eutrophication in Bangdu Bay on volcanic Jeju Island, Korea.Limnol. Oceanogr.,50, 1393–1403.

    Google Scholar 

  • Kelly, R.P. and S. B. Moran. 2002. Seasonal changes in groundwater input to a well-mixed estuary estimated using radium isotopes and implications for coastal nutrient budgets.Limnol. Oceanogr.,47, 1786–1807.

    Article  Google Scholar 

  • Kim, G. 2002. Influence of submarine groundwater discharge for marine pollution and redtide. p. 91–114. In:Proceedings of the autumn meeting, 2002, the Korean Society of Oceanography, Seoul.

    Google Scholar 

  • Kim, G. and D.W. Hwang. 2002. Tidal pumping of groundwater into the coastal ocean revealed from submarine 222Rn and CH4 monitoring.Geophys. Res. Lett.,29, doi: 10.1029/2002GL015093.

  • Kim, G., J.W. Ryu, H.S. Yang, and S.T. Yun. 2005. Submarine groundwater discharge (SGD) into the Yellow Sea revealed by 228Ra and 226Ra isotopes: Implications for global silicate fluxes.Earth Planet. Sci. Lett.,237, 156–166.

    Article  Google Scholar 

  • Krest, J.M., W.S. Moore, L.R. Gardner, and J.T. Morris. 2000. Marsh nutrient export supplied by groundwater discharge: Evidence from radium measurements.Global Biogeochem. Cycles,14, 167–176.

    Article  Google Scholar 

  • Kuwae, T., E. Kibe, and Y. Nakamura. 2003. Effect of emersion and immersion on the porewater nutrient dynamics of an intertidal sandflat in Tokyo Bay.Estuar. Coast. Shelf Sci.,57, 929–940.

    Article  Google Scholar 

  • Lambert, M. and W.C. Burnett. 2003. Submarine groundwater discharge estimates at a Florida coastal site based on continuous radon measurements.Biogeochem.,66, 55–73.

    Article  Google Scholar 

  • Martin, J.B., J.E. Cable, J. Jaeger, K. Hartl, and C.G. Smith. 2006. Thermal and chemical evidence for rapid water exchange across the sediment-water interface by bioirrigation in the Indian River Lagoon, Florida.Limnol. Oceanogr.,51, 1332- 1341.

    Article  Google Scholar 

  • Martin, J.B., J.E. Cable, P.W. Swarzenski, and M.K. Lindenberg. 2004. Enhanced submarine ground water discharge from mixing of pore water and estuarine water.Ground Water,42, 1000–1010.

    Article  Google Scholar 

  • Na, T.H. and T. Lee. 2005. Estimation of denitrification in the Ganghwa tidal flat by a pore water model.J. Kor. Soc. Oceanogr. (The Sea),10, 56–68.

    Google Scholar 

  • Niencheski, L.F.H., H.L. Windom, W.S. Moore, and R.A. Jahnke. 2007. Submarine groundwater discharge of nutrients to the ocean along a coastal lagoon barrier, Southern Brazil.Mar. Chem.,106, 546–561.

    Article  Google Scholar 

  • Precht, E. and M. Huettel. 2003. Advective pore-water exchange driven by surface gravity waves and its ecological implications.Limnol. Oceanogr.,48, 1674–1684.

    Google Scholar 

  • Riedl, R., N. Huang, and R. Machan. 1972. The subtidal pump: a mechanism of intertidal water exchange by wave action.Mar. Biol.,13, 210–221.

    Article  Google Scholar 

  • Robinson, C., B. Gibbes, H. Carey, and L. Li. 2006. Driving mechanisms for flow and salt transport in a subterranean estuary.Geophys. Res. Lett.,33, doi: 10.1029/2005GL025247. Robinson, C., L. Li, and D.A. Barry. 2007. Effect of tidal forcing on a subterranean estuary.Advan. Water Res.,30, 851–865.

    Google Scholar 

  • Rocha, C. 1998. Rhythmic ammonium regeneration and flushing in intertidal sediments of the Sado estuary.Limnol. Oceanogr.,43, 823–831.

    Article  Google Scholar 

  • Rocha, C. 2000. Density-driven convection during flooding of warm, permeable intertidal sediments: the ecological importance of the convective turnover pump.J. Sea Res.,43, 1–14.

    Article  Google Scholar 

  • Shum, K.T. and B. Sundby. 1996. Organic matter processing in continental shelf sediments-the subtidal pump revisited.Mar. Chem.,53, 81–87.

    Article  Google Scholar 

  • Swarzenski, P.W., C. Reich, K.D. Kroeger, and M. Baskaran. 2007. Ra and Rn isotopes as natural tracers of submarine groundwater discharge in Tampa Bay, Florida.Mar. Chem.,104, 69–84.

    Article  Google Scholar 

  • Taniguchi, M. 2002. Tidal effects on submarine groundwater discharge into the ocean.Geophys. Res. Lett.,29, doi: 10.1029/2002GL014987.

  • Usui, T., I. Koike, and N. Ogura. 1998. Tidal effect on dynamics of pore water nitrate in intertidal sediment of a eutrophic estuary.J. Oceanogr.,54, 205–216.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, D.W., Kim, G. & Yang, H.S. Active exchange of water and nutrients between seawater and shallow pore water in intertidal sandflats. Ocean Sci. J. 43, 223–232 (2008). https://doi.org/10.1007/BF03029926

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03029926

Key words

Navigation