Skip to main content
Log in

High temperature fatigue behavior of wrought nickel-base superailoy GH4049

  • Published:
Metals and Materials Aims and scope Submit manuscript

Abstract

Push-pull total strain-controlled fatigue tests without and with a hold period were carried at elevated temperatures for wrought nickel base superailoy GH4049. The influence of the testing temperature and strain hold period on fatigue behavior was determined. The alloy would exhibit either cyclic strain hardening, softening or stability during cyclic straining. Fatigue life depends strongly on the testing temperature and the introduction of the strain hold period. Observations on fatigue specimens using transmission electron microscopy (TEM) showed that the dislocations were distributed mostly in the γ matrix. It was observed by scanning electron microscopy (SEM) that cracks initiated always in a transgranular mode, but their propagation mode was closely related to the testing temperature. In addition, the fatigue life was predicted by linear damage summation (LDS), strain range partitioning (SRP) and the strain energy partitioning (SEP) method. The results of life prediction indicated that the SRP and SEP methods were in a good agreement as to the measured and predicted life at lower temperatures, while the LDS method showed better predictability at higher temperature as compared to the SRP and SEP methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. F. Merrick,Metall. Trans. 5, 891 (1974).

    Article  CAS  Google Scholar 

  2. D. Fournier and A. Pineau,Metall. Trans. 8A, 1095 (1977).

    CAS  Google Scholar 

  3. M. A. Burke and C. G. Beck,Metall. Trans. 15A, 661 (1984).

    CAS  Google Scholar 

  4. D. C. Lord and L. F. Coffin, Jr.,Metall. Trans. 4, 1647 (1973).

    Article  CAS  Google Scholar 

  5. W. J. Ostergren,J. Test Eval. 4, 327 (1976).

    Article  CAS  Google Scholar 

  6. M. F. Day and G. B. Thomas,Metal Sci. 1, 25 (1979).

    Google Scholar 

  7. E. G. Ellison and W. J. Plumbridge,Fatigue Fract. Eng. Mater. Struct. 14, 721 (1991).

    Article  Google Scholar 

  8. S. X. Li and D. J. Smith,Fatigue Fract. Eng. Mater. Struct. 18, 631(1995).

    Article  CAS  Google Scholar 

  9. S. D. Antolovich, S. Liu and R. Baur,Metall. Trans. 12A, 473 (1981).

    Google Scholar 

  10. B. A. Lerch and N. Jayaraman,Mater. Sci. Eng. 66, 151 (1984).

    Article  CAS  Google Scholar 

  11. K. B. S. Rao, H. Schiffers, H. Schuster and H. Nickel,Metall. Trans. 19A, 359(1988).

    CAS  Google Scholar 

  12. B. A. Lerch and V. Gerold,Metall. Trans. 18A, 2135 (1987).

    CAS  Google Scholar 

  13. S. K. Hwang, H. N. Lee and B. H. Yoon,Metall. Trans. 20A, 2793 (1989).

    CAS  Google Scholar 

  14. M. Valsan, P. Parameswaran, K. B. S. Rao, M. Vrjayalakshmi, S. L. Mannan and D.H. Shastry,Metall. Trans. 23A, 1751 (1992).

    CAS  Google Scholar 

  15. M. Valsan, D. H. Sastry, K. B. S. Rao and S. L. Mannan,Metall. Trans. 25A, 159 (1994).

    CAS  Google Scholar 

  16. W. J. Plumbridge and E. G. Ellison,Fatigue Fract. Eng. Mater. Struct. 14, 373 (1991).

    Article  Google Scholar 

  17. C. J. McMahon and L. F. Coffin, Jr.,Metall. Trans. 1, 3443 (1970).

    CAS  Google Scholar 

  18. S. Bashir, P. Taupin and S. D. Antolovich,Metall. Trans. 10A, 1481 (1979).

    CAS  Google Scholar 

  19. W. J. Plumbridge and E. G. Ellison,Mater. Sci. Tech. 3,706 (1987).

    CAS  Google Scholar 

  20. L. F. Coffin, Jr.,Pmc. Air Force Conference on Fracture and Fatigue of Aircraft Structures and Materials, p. 301, AFDL TR 70-144, Ohio (1970).

  21. L. F. Coffin, Jr.,Symposium on Creep-Fatigue Interaction (ed., R. M. Curran), p. 349, ASME-MPC, New York (1976).

    Google Scholar 

  22. S. S. Manson, G. R. Halford and M. H. Hirschberg,Proc. of Symposium on Design for Elevated Temperature Environment (ed., S. Y. Zamrik), p. 12, ASME, New York (1971).

    Google Scholar 

  23. ASME Boiler and Pressure Vessel Code, Section III, Case N47-14, American Society of Mechanical Engineers, New York (1978).

  24. J. R. He, Z. X. Duan, Y. L. Ning and D. Zhao,Acta Metall. Sinica 21, A54 (1985).

    Google Scholar 

  25. T. Goswami,Int. J. Fatigue 19,109 (1997).

    Article  CAS  Google Scholar 

  26. G. J. Lloyd and J. Wareing,Metal. Tech. 8, 297 (1981).

    CAS  Google Scholar 

  27. M. Y. Nazmy,Metall. Tram. 14A, 449 (1983).

    Article  Google Scholar 

  28. A. D. Batte,Fatigue at High Temperature (ed., R. P. Skelton), p. 365, Applied Science Publishers, London (1983).

    Google Scholar 

  29. M. F. Day and G. B. Thomas,Fatigue Fract. Eng. Mater. Struct. 8, 33 (1985).

    Article  Google Scholar 

  30. L. F. Coffin, Jr.,Fatigue at Elevated Temperature (eds., A. E. Carden, A. J. McEvily and C. H. Wells), p. 5, ASTM STP 520, Philadelphia (1972).

    Google Scholar 

  31. G. Malakondaiah and T. Nicholas,Metall. Mater. Trans. 26A, 1113(1995).

    Article  CAS  Google Scholar 

  32. H. L. Berstein,AFML TR-79-4075 (1979).

  33. R. E. Stoltz and A. G. Pineau,Mater. Sci. Eng. 34, 275 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z.G., Chen, L.J., Tian, J.F. et al. High temperature fatigue behavior of wrought nickel-base superailoy GH4049. Metals and Materials 5, 597–612 (1999). https://doi.org/10.1007/BF03026312

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03026312

Key words

Navigation