Skip to main content

Advertisement

Log in

Alkaline phosphatase activity and phosphatase hydrolyzable phosphorus for phytoplankton in hiroshima bay, Japan

  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

We investigated the seasonal variability of free alkaline phosphatase activity in seawater and alkaline phosphatase hydrolysable phosphorus (APHP) at 3 stations in Hiroshima Bay using alkaline phosphatase extracted from the dinoflagellates Alexandrium tamarense and Gymnodinium catenatum. The dissolved inorganic phosphorus (DIP) was lower than 1 µM in all samples; the lowest values were in May. The amount of APHP was high at the surface and bottom waters of all stations in May, showing DIP-depleted conditions. In August and November, the amount of APHP was much less than the amount of APHP in May, indicating that the availability of dissolved organic phosphorus (DOP) for these species was low and/or uptake during the dinoflagellate blooming might have occurred in the area. The results obtained from short-term variations of AP activity might suggest that the growth of dinoflagellates in this season may be partly supported by the AP produced by other diatoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boni, L., E. Carpene, D. Wynne, and M. Reti. 1989. Alkaline phosphatase activity inProtogonyaulax tamarensis.J. Plankton. Res.,11, 879–885.

    Article  Google Scholar 

  • Cembella, A.D., N.J. Antia, and P.J. Harrison. 1984. The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: A multidisciplinary perspective: Part 1. CRC Critic.Rev. Microbiol.,10, 317–391.

    Google Scholar 

  • Chróst, R.J. 1991. Microbial enzymes in aquatic environments. Springer-Verlag, New York. 317 p.

    Google Scholar 

  • Gonzàlez-Gil, S., B. A. Keafer, R.V.M. Jovine, A. Aguilera, S. Lu, and D.M. Anderson. 1998. Detection and quantification of alkaline phosphatase in single cells of phosphorus-starved marine phytoplankton.Mar. Ecol. Prog. Ser.,164, 21–35.

    Article  Google Scholar 

  • Guillard, R.R.L. and P.E. Hargraves. 1993. Stichochrysis immobilis is a diatom, not a chrysophyte.Phycologia,32, 234–236.

    Google Scholar 

  • Hallegraeff, G.M., S.O. Stanley, C.J. Bolch. and S.I. Blackburn. 1989. Gymnodinium catenatum blooms and shellfish toxicity in southern Tasmania, Australia. p. 77–80. In:Red tides. ed. by T. Okaichi, D.M. Anderson, and T. Nemoto. Elsevier, New Yo r k.

    Google Scholar 

  • Hernàndez, I. and B.A. Whitton. 1996. Retention of P-nitrophenol and 4-methylumbelliferone by marine macroalgae and implications for measurement of alkaline phosphatase activity.J. Phycol.,32, 819–825.

    Article  Google Scholar 

  • Hiroshima Prefecture. 1995. Report to observation of shellfish poisoning, 1994. Hiroshima, 1–5. (In Japanese)

  • Holm-Hansen, O.C., C.J. Lorenzen, R.W. Holms, and J.D.H. Strickland. 1965. Fluorometric determination of chlorophyll.J. Cons. Perm. Int. Explor. Mer.,30, 3–15.

    Google Scholar 

  • Keller, M.D., R.C. Selvin, W. Claus, and R.R.L. Guillard. 1987. Media for the culture of oceanic ultraphytoplankton.J. Phycol.,23, 633–638.

    Google Scholar 

  • Koroleff, F. 1983. Determination of phosphorus. P. 172. In:Methods of seawater analysis. ed. by K. Grasshoff, M. Ehrhardt, and K. Kremling. Verlag Chemie, Weinheim.

    Google Scholar 

  • Kuenzler, E.J. and J.P. Perras. 1965. Phosphatases of marine algae.Bull. Mar. Biol. Lab.,128, 271–284.

    Article  Google Scholar 

  • Kuenzler, E.J. 1965. Glucose-6-phosphate utilization by marine algae.J. Phycol.,1, 156–164.

    Article  Google Scholar 

  • Maeda, M. and N. Taga. 1973. Deoxyribonuclease activity in seawater and sediment.Mar. Biol.,20, 58–63.

    Article  Google Scholar 

  • Nausch, M. 1998. Alkaline phosphatase activities and the relationship to inorganic phosphate in the Pomeranian Bight (southern Baltic Sea).Aquat. Microb. Ecol.,16, 87–94.

    Article  Google Scholar 

  • Oh, S.J., T. Yamamoto, Y. Kataoka, O. Matsuda, Y. Matsuyama, and Y. Kotani. 2002. Utilization of dissolved organic phosphorus by the two toxic dinoflagellates, Alexandrium tamarense and Gymnodinium catenatum (Dinophyceae).Fisheries Sci.,68, 416–424.

    Article  Google Scholar 

  • Oh, S.J. and Y.H. Yoon. 2004. Effects of water temperature, salinity and irradiance on the growth of the toxic dinoflagellate,Gymnodinium catenatum (Graham) isolated from Yeosuhae Bay, Korea.Algae.,19, 1–10. (In Korean)

    Google Scholar 

  • Parsons, T.R., M. Takahashi, and B. Margrave. 1984. Biological oceanographic processes. Pergamon Press. 330 p.

  • Pollehne, F., S. Busch, G. Jost, B. Meyer-Harms, M. Nausch, M. Reckermann, P. Schäning, D. Setzkorn, N. Wasmund, and Z. Witek. 1995. Primary production patterns and heterotrophic use of organic material in the Pomeranian Bay (Southern Baltic).Bull. Sea. Fish Inst.,3, 43–60.

    Google Scholar 

  • SECA (Seto Inland Sea Environmental Conservation Association). 1998. Seto Inland Sea Environmental Conservation, Kobe. 1–17. (In Japanese)

  • Strickland, J.D.H. and T.R. Parsons. 1972. A practical handbook of seawater analysis. Fishries Research Board of Canada, Ottawa. 310 p.

  • Suzumura, M., K. Ishikawa, and H. Ogawa. 1998. Characterization of dissolved organic phosphorus in coastal seawater using ultrafiltration and phosphohydrolytic enzymes.Limnol. Oceanogr.,43, 1553–1564.

    Google Scholar 

  • Tada, K., K. Monaka, M. Morishita, and T. Hashimoto. 1998. Standing stocks and production rates of phytoplankton and abundance of bacteria in the Seto Inland Sea,Japan. J. Oceanogr.,54, 285–295.

    Article  Google Scholar 

  • Uchida, T. 1992. Alkaline phosphatase and nitrate reductase activity inProrocentrum micans Ehrenberg.Bull. Plankton Soc. Jpn.,38, 85–92.

    Google Scholar 

  • Valiela, I. 1995. Marine Ecological Processes. Springer-Verlag, New York. 686 p.

    Google Scholar 

  • Yamaguchi, M. and S. Itakura. 1999. Nutrition and growth kinetics in nitrogen- or phosphorus-limited cultures of the noxious red tide dinoflagellateGymnodinium mikimotoi.Fisheries Sci.,65, 367–373.

    Google Scholar 

  • Yamamoto, T. and K. Tarutani. 1997. Effects of temperature, salinity and irradiance on the growth of toxic dinoflagellate Alexandrium tamarense isolated from Hiroshima Bay, Japan.Jpn. J. Phycol. (Sorui),45, 95–101. (In Japanese)

    Google Scholar 

  • Yamamoto, T., M. Ishida, and T. Seiki. 2002a. Long-term variation in phosphorus and nitrogen concentration in the Ohta River water, Hiroshima, Japan as a major factor causing the change in phytoplankton species composition.Bull. Jpn. Soc. Fish. Oceanogr.,66, 102–109. (In Japanese)

    Google Scholar 

  • Yamamoto, T., S.J. Oh, and Y. Kataoka. 2002b. Effect of temperature, salinity and irradiance on the growth of the toxic dinoflagellateGymnodinium catenatum (Dinophyceae) isolated from Hiroshima Bay, Japan.Fisheries Sci.,68, 356–363.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Ho Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, S.J., Yoon, Y.H., Yamamoto, T. et al. Alkaline phosphatase activity and phosphatase hydrolyzable phosphorus for phytoplankton in hiroshima bay, Japan. Ocean Sci. J. 40, 183–190 (2005). https://doi.org/10.1007/BF03023517

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03023517

Key words

Navigation