Skip to main content
Log in

Proprietà elettroniche di macrocicli azotati. Porfirina ed emiporfirazina

Electronic properties of N-containing macrocycles. Porphyrin and hemiporphyrazine

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

The electronic structure of macrocycles porphyrin and hemiporphyrazine is studied with the PPP method. The differences in conjugation existing in the two systems are discussed and compared with their experimental properties. In particular the possibility for the hemiporphyrazine to give rise to conducting materials is investigated. The electronic spectrum of hemiporphyrazine in the range 400–250 nm is recorded, assigned and compared with that of porphyrin. The spectrum is reproduced by a sum of gaussian functions centered on the computed transition energies.

Riassunto

La struttura elettronica dei macrocicli porfirina ed emiporfirazina è studiata mediante il metodo PPP. Vengono messe in evidenza le diverse caratteristiche della coniugazione presente nei due sistemi. Queste caratteristiche vengono correlate con le rispettive proprietà sperimentali ed in particolare con la possibilità, nel caso dell’emiporfirazina, di modificarle al fine di ottenere polimeri conduttori. Lo spettro elettronico dell’emiporfirazina da 400 a 250 nm è misurato, interpretato e confrontato con quello della porfirina. Lo stesso spettro è ben riprodotto con una somma di gaussiane centrate sulle frequenze delle transizioni calcolate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Blbliografia

  • Asbrink L., Fridh C, Lindholm E., 1977a.HAM/3, a semiempirical MO theory. I. The SCF method. Chem. Phys. Lett., 52: 63–68.

    Article  CAS  Google Scholar 

  • Asbrink L., Fridh C, Lindholm E., 1977b.HAM/3, a semiempincal MO theory. II. Photoelectron spectra. Chem. Phys Lett., 52: 69–71.

    Article  CAS  Google Scholar 

  • Asbrink L., Fridh C, Lindholm E., 1977c.HAM/3, a semiempincal MO theory. III. Unoccupied orbitals. Chem. Phys. Lett., 52: 72–75.

    Article  CAS  Google Scholar 

  • Asbrink L., Fridh C, Lindholm E., 1978.Electronic structure of TCNQ, studied with HAM/3. Int. J. Quantum Chem., 13: 331–347.

    Article  CAS  Google Scholar 

  • Asbrink L., Fridh C, Lindholm E., 1979.The energy expression in the semiempincal HAM/3 method. Chem. Phys. Lett., 66: 411–416.

    Article  Google Scholar 

  • Attanasio D., Collamati I., Cervone E., 1983.Synthesis characterization and spectroscopic studies of some metal derivatives of hemiporphyrazine. Inorg. Chem., 22: 3281–3287.

    Article  CAS  Google Scholar 

  • Beveridge D.L., Hinze J., 1970.Parametrization of semiempirical π-electron molecular orbital calculations. π-systems containing carbon, nitrogen, oxygen and fluorine. J. Am. Chem. Soc., 93: 3107–3114.

    Google Scholar 

  • Billingsley F. B., Bloor J. E., 1968.Theoretical studies on the electronic spectra of substituted aromatic molecules. Theoret. Chim. Acta, 11: 325–343.

    Article  CAS  Google Scholar 

  • Bossa M., Cauletti C, Grandinetti F., Nota P., 1987.A quantum mechanical semi-empirical interpretation of the electronic spectrum and gas phase UV photoelectron spectrum of hemiporphyrazine. J. Chim. Phys., 84: 819–820.

    CAS  Google Scholar 

  • Chong D.P., 1979.Study of the semi-empirical HAM/3 MO method. Theor. Chim. Acta, 53: 55–64.

    Article  Google Scholar 

  • Collamati I., Cervone E., 1986.Some μ-oxo compounds of iron-hemiporphyrazine. Synthesis and properties. Inorg. Chim. Acta, 123: 147–154.

    Article  CAS  Google Scholar 

  • Collamati I., Cervone E., Scoccia R., 1985.Synthesis and reactivity of some Fe(II) and Mn(II) complexes with hemiporphyrazine. Inorg. Chim. Acta, 98: 11–17.

    Article  CAS  Google Scholar 

  • Coulson C. A., Longuet-Higgins F. C., 1947.The electronic structure of conjugated systems. I. General theory. Proc. Roy. Soc, A 191: 39–60.

    Google Scholar 

  • Del Re G., 1971.Aromaticity and delocalization in five membered heterocycles. Jerusalem Symp. Quantum Chem. Biochem.: 74–84.

  • Del Re G., 1990.The PPP-CI scheme as a fundamental physical model. Int. J. Quantum Chem., 37, in press.

  • Dolphin D., 1978.The Porphyrins. Vol. 1–7, Acad. Press, Londra.

    Google Scholar 

  • Edwards L., Dolphin D., Gouterman M., Adler A. D., 1971.Porphyrins. XVII. Vapor absorption spectra and redox reactions: tetraphenylporphins and porphin. J. Mol. Spectr., 38: 16–32.

    Article  CAS  Google Scholar 

  • Esposito J. N., Sutton L. E., Kenney M. E., 1967.Infrared and nuclear magnetic resonance studies of some germanium phthalocyanines and hemiporphyrazines. Inorg. Chem., 6: 1116–1120.

    Article  CAS  Google Scholar 

  • Fridh C., Asbrink L., Lindholm E., 1978.Valence excitation of linear molecules. II. Excitation and UV spectra of C 2N2) CO2 and N2O. Chem. Phys., 27: 169–181.

    Article  CAS  Google Scholar 

  • Gouterman M., 1961.Spectra of porphyrins. J. Mol. Spectr., 6: 138–163.

    Article  CAS  Google Scholar 

  • Gouterman M., Khalil G., 1974.Porphyrin free base phosphorescence. J. Mol. Spectr., 53: 88–100.

    Article  CAS  Google Scholar 

  • Gust D., Moore T. A., 1989.Mimicking photosynthesis. Science, 244: 35–41.

    Article  CAS  Google Scholar 

  • Hanack M., Mitulla K., Pawlowski G., Subramanian L. R., 1981.Synthesis and properties of a new kind of one dimensional conductor. J. Organometal. Chem., 204: 315–325.

    Article  Google Scholar 

  • Higuchi Y., Kusunoki M., Matsuura Y., Yasuoka N., Kakudo M., 1984.Refined structure of cytochrome c 3 at 1.8 Å resolution. J. Mol. Biol., 172: 109–119.

    Article  CAS  Google Scholar 

  • Hiller W., Strahle J., Datz A., Hanack M., Hatfield W. E., Ter Haar L. W., Gutlich P., 1984.Synthesis, structure and magnetic properties of catena (μ-oxo) (hemiporphyrazinato) iron (IV), the first polymeric μ-oxo-bridged complex of iron. J. Am. Chem. Soc., 106: 329–335.

    Article  CAS  Google Scholar 

  • Honeybourne C. L., 1973.A study of porphyrin analogues. Tetrahedron, 29: 1549–1554.

    Article  CAS  Google Scholar 

  • Honeybourne C. L., Burchill P., 1978.Nontemplate synthesis of complexes with conjugated macrocyclic ligands. Inorg. Synth., 18: 47–49.

    Google Scholar 

  • Honeybourne C. L., Ewen R. J., 1982.Closed-shell crystal orbital calculations on columnar stacks of conjugated macrocyclic ligands. J. Phys. Chem. Solids, 44: 833–838.

    Article  Google Scholar 

  • Honeybourne C. L., Ewen R. J., Hill C.A.S., 1984.Use of thin films of conjugated organic macrocycles as the active elements in toxic gas sensors operating at room temperature. J. Chem. Soc. Faraday Trans., 180: 851–863.

    Google Scholar 

  • Kashiwagi H., Takada T., Obara S., Miyoshi E., Ohno K., 1978.Ab-initio molecular orbital calculations of the cobalt-porphine complex. Int. J. Quantum Chem., 14: 13–27.

    Article  CAS  Google Scholar 

  • Kim B. F., Bohaxdy J., 1977.Single site spectra of Zn porphin in triphenylene. J. Mol. Spectr., 58: 90–101.

    Article  Google Scholar 

  • Kuhn W., Braun E., 1930.Messung und Dentung der Rotationsdispersion einfacher Stoffe. Z. Phys. Chem., B8: 281–313.

    Google Scholar 

  • Kuhn W., Braun E., 1930.Measurement and meaning of rotatory dispersion of simple substances. Z. Phys. Chem., B9: 445.

    Google Scholar 

  • Lee Y. S., Freed K. F., Sun H., Yeager D. L., 1983.The correlated pi-hamiltoman of trans-butadiene as calculated by the ab-initio effective valence shell hamiltonian method: comparison with semiempirical models. J. Chem. Phys., 79: 3862–3873.

    Article  CAS  Google Scholar 

  • Lin J., Yu C, Peng S., Akiyama I., Li K., Lee L. K., Le Breton P.R., 1980.Ultraviolet photoelectron studies of the ground state electronic structure and gas-phase tautomensm of purine and adenine. J. Am. Chem. Soc., 102: 4627–4631.

    Article  CAS  Google Scholar 

  • Meyer G., Hartmann M., Wöhrle D., 1975.Polymere mit dem Zentralatom eines Makrocyclus in der Hauptkette. Makromol. Chemie, 176: 1919–1927.

    Article  CAS  Google Scholar 

  • Meyer T. J., 1989.Chemical approaches to artificial photosynthesis. Acc. Chem. Res., 22: 163–170.

    Article  CAS  Google Scholar 

  • Morozov Y. V., Chekhov V. O., 1989.Some principles of quantum-chemical parametrisation. Electronic structure and spectra of vitamines B 6 and their analogues. Russ. J. Phys. Chem., 63: 1–22.

    CAS  Google Scholar 

  • Nishimoto K., Forster L. S., 1966.SCFMO calculations of the heteroatomic systems with the variable β approximations. Theor. Chim. Acta, 4: 155–165.

    Article  CAS  Google Scholar 

  • Pariser R., Parr R. G., 1953.A semi-empirical theory of the electron spectra and electronic structure of complex unsaturated molecules. I. J. Chem. Phys., 21: 466–471.

    Article  CAS  Google Scholar 

  • Pariser R., Parr R. G., 1953.A semi-empirical theory of the electron spectra and electronic structure of complex unsaturated molecules. II J. Chem. Phys., 21: 767–776.

    Article  CAS  Google Scholar 

  • Parr R. G., 1963.Quantum Theory of Molecular Electronic Structure. Benjamin, New York.

    Google Scholar 

  • Pepe G., Serres B., Laporte D., Del Re G., Minichino C, 1985.Surface electrostatic potentials on macromolecules in a monopole approximation: a computer program and an application to cytochromcs. J. Theor. Biol., 115: 571–593.

    Article  CAS  Google Scholar 

  • Petke J. D., Maggiora G. M., Shipman L., Christoffersen R. E., 1978.Stereoelectronic properties of photosynthetic and related systems. J. Mol Spectr., 71: 64–84.

    Article  CAS  Google Scholar 

  • Pople J. A., 1953.Electron interaction in unsaturated hydrocarbons. Trans. Faraday Soc., 49: 1375–1385.

    Article  CAS  Google Scholar 

  • Reynolds C. H., 1988.An AM1 Theoretical Study of the Structure and Electronic Properties of Porphyrin. J. Org. Chem., 53: 6061–6064.

    Article  CAS  Google Scholar 

  • Sandorfy C., 1964.Electronic Spectra and Quantum Chemistry. Prentice-Hall, Londra.

    Google Scholar 

  • Seelig F. F., 1979.Synthesis and properties of a new kind of one-dimensional conductors. 2. Extended Hückel calculations on the energy band structure. Z. Naturforschung, 34A: 986–992.

    CAS  Google Scholar 

  • Sekino H., Kobayashi H., 1981.A screened potential molecular-orbital calculation of the π electron system of porphyrin. J. Chem. Phys., 75: 3477–3484.

    Article  CAS  Google Scholar 

  • Slater J. C., 1930.Atomic shielding constants. Phys. Rev., 36: 57–64.

    Article  CAS  Google Scholar 

  • Sundbom M., 1966.Semi-empirical molecular orbital studies of neutral porphyrin PH 2, the dianion P2- and dication PH2+ 4. Acta Chem. Scand., 22: 1317–1335.

    Article  Google Scholar 

  • Szoke J., Kiss A. I., 1977.Interative recalculation of 3 integrals. Acta Chim. Acad. Scient. Hung., 92: 367–378.

    CAS  Google Scholar 

  • Weiss C., 1972.The pi electron structure and absorption spectra of chlorophylls in solution. J. Mol. Spectr., 44: 37–80.

    Article  CAS  Google Scholar 

  • Weiss C., Kobayashi H., Gouterman M., 1965.Spectra of porphyrins. J. Mol. Spectr., 16: 415.

    Article  CAS  Google Scholar 

  • Younkin J. M., Smith L. J., Compton R. N., 1975.Semi-empirical calculations of the π-electron affinities for some conjugated organic molecules. Theoret. Chim. Acta, 41: 157–176.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Nella seduta del 14 giugno 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamo, N.d.C., Bossa, M., Cervone, E. et al. Proprietà elettroniche di macrocicli azotati. Porfirina ed emiporfirazina. Rend. Fis. Acc. Lincei 2, 15–33 (1991). https://doi.org/10.1007/BF03010409

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03010409

Key words

Navigation