Skip to main content
Log in

Quantum-Chemical Calculations of the Geometric Structures and Electronic Spectra of Phthalocyanines MgPc and H2Pc and Their β-Octaphenyl Derivatives

  • Published:
Journal of Applied Spectroscopy Aims and scope

Geometric structures of phthalocyanines (MgPc, H2Pc) and their β-octaphenyl derivatives (MgPcPh8, H2PcPh8) were calculated by the DFT PBE/TZVP method; excited electronic states, by the modifi ed INDO/Sm method. An examination of the bond lengths taking into account data for porphyrazines MgTAP and H2TAP showed that the weight of the internal 16-atom macroheterocycle in the electronic structures of MgPc and MgPcPh8 increased as compared to MgTAP whereas the contribution of the 18-atom azacyclopolyene of the free bases H2Pc and H2PcPh8 decreased as compared to H2TAP. The two lowest unoccupied MOs and highest occupied MO of the examined phthalocyanines were 70% localized on the internal 16-atom macrocycle (INDO/Sm data). Filled MOs of the next lowest energy had strong mixing of the π-AOs of the 16-atom macrocycle with π-MOs of annelated benzene rings (MgPc and H2Pc) and also with π-MOs of the phenyl rings (MgPcPh8 and H2PcPh8). The Q-state energies calculated by INDO/Sm agreed with the experimental data within 200–400 cm–1. Several ππ*-transitions characterized by local excitation of the 16-atom macrocycle and electron transfer between the 16-atom ring and the benzene rings were mainly responsible for the observed broad absorption spectrum of the phthalocyanines in the range 27,000–37,000 cm–1 (Soret band). The two strongest calculated ππ*-transitions in this range agreed qualitatively with the experimental ones. However, the calculated energy was overestimated by an average of ~3000 cm–1. The calculated energy of the strongest transition for MgPcPh8 corresponded well with the experimental Soret band maximum (overestimated by only 900 cm–1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Kuz’mitskii and D. I. Volkovich, Zh. Prikl. Spektrosk., 75, No. 1, 28–35 (2008) [V. A. Kuzmitsky and D. I. Volkovich, J. Appl. Spectrosc., 75, 27–35 (2008)].

  2. D. I. Volkovich, V. A. Kuz’mitskii, and P. A. Stuzhin, Zh. Prikl. Spektrosk., 75, No. 5, 606–622 (2008) [D. I. Volkovich, V. A. Kuzmitsky, and P. A. Stuzhin, J. Appl. Spectrosc., 75, 621–636 (2008)].

  3. V. N. Knyukshto, V. A. Kuz’mitskii, E. A. Borisevich, D. I. Volkovich, A. S. Bubnova, P. A. Stuzhin, and K. N. Solov′ev, Zh. Prikl. Spektrosk., 76, No. 3, 365–375 (2009) [V. N. Knyukshto, V. A. Kuzmitsky, E. A. Borisevich, D. I. Volkovich, A. S. Bubnova, P. A. Stuzhin, and K. N. Solovyov, J. Appl. Spectrosc., 76, 341–351 (2009)].

  4. K. N. Solovyov, P. A. Stuzhin, V. A. Kuzmitsky, D. I. Volkovich, V. N. Knyukshto, E. A. Borisevich, and A. Ul-Haque, Makrogeterotsikly/Macroheterocycles, 3, 51–62 (2010).

    Article  Google Scholar 

  5. V. N. Knyukshto, D. I. Volkovich, L. L. Gladkov, V. A. Kuz’mitskii, A. Ul-Haque, I. A. Popkova, P A. Stuzhin, and K. N. Solov’ev, Opt. Spektrosk., 113, 501–517 (2012).

    Article  Google Scholar 

  6. D. I. Volkovich, L. L. Gladkov, V. A. Kuz’mitskii, and K. N. Solov′ev, Zh. Prikl. Spektrosk., 78, No. 2, 171–180 (2011) [D. I. Volkovich, L. L. Gladkov, V. A. Kuzmitsky, and K. N. Solovyov, J. Appl. Spectrosc., 78, 154–164 (2011)].

  7. P. P. Pershukevich, D. I. Volkovich, L. L. Gladkov, S. V. Dudkin, A. P. Stupak, V. A. Kuz’mitskii, E. A. Makarova, and K. N. Solov’ev, Opt. Spektrosk., 117, 743–761 (2014).

    Article  Google Scholar 

  8. D. I. Volkovich, P. P. Pershukevich, L. L. Gladkov, S. V. Dudkin, V. A. Kuz’mitskii, E. A. Makarova, and K. N. Solov′ev, Effect of Annelation of Benzene Rings on the Photophysics and Electronic Structure of Tetraazachlorins [in Russian], Preprint No. 750, B. I. Stepanov Inst. Phys., Minsk (2015).

  9. P. P. Pershukevich, D. I. Volkovich, L. L. Gladkov, S. V. Dudkin, V. A. Kuz’mitskii, E. A. Makarova, and K. N. Solov’ev, Opt. Spektrosk., 123, 518–535 (2017).

    Article  Google Scholar 

  10. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  11. R. K. Chaudhuri, K. R. Freed, S. Chattopadhyay, and U. S. Mahapatra, J. Chem. Phys., 135, 084118-1–084118-10 (2011).

    Article  ADS  Google Scholar 

  12. V. N. Nemykin, S. V. Dudkin, F. Dumoulin, C. Hirel, A. G. Gurek, and V. Ahsen, ARKIVOC, No. 1, 142–204 (2014).

  13. T. V. Dubinina, K. V. Paramonova, S. A. Trashin, N. E. Borisova, L. G. Tomilova, and N. S. Zefirov, Dalton Trans., 43, 2799–2809 (2014).

    Article  Google Scholar 

  14. D. N. Laikov, Chem. Phys. Lett., 281, 151–156 (1997).

    Article  ADS  Google Scholar 

  15. D. N. Laikov, Development of an Economical Approach to the Calculation of Molecules by the Density Functional Method and Its Application to the Solution of Complicated Chemical Problems, Candidate Dissertation, Moscow (2000).

  16. L. L. Gladkov, V. V. Gromak, and V. K. Konstantinova, Zh. Prikl. Spektrosk., 74, No. 3, 296–299 (2007) [L. L. Gladkov, V. V. Gromak, and V. K. Konstantinova, J. Appl. Spectrosc., 74, 328–332 (2007)].

  17. L. L. Gladkov and V. V. Gromak, Zh. Prikl. Spektrosk., 79, No. 6, 862–867 (2012) [L. L. Gladkov and V. V. Gromak, J. Appl. Spectrosc., 79, 854–860 (2012)].

  18. V. A. Kuz’mitskii, Excited Electronic States of Metalloporphyphin Dimers by the SCF MO LCAO Method, Preprint No. 186, Inst. Phys. AS BSSR, Minsk (1979).

  19. A. V. Luzanov, Usp. Khim., 49, 2086–2117 (1980).

    Article  Google Scholar 

  20. L. Gajda, T. Kupka, and M. A. Broda, Struct. Chem., 29, 667–679 (2018).

    Article  Google Scholar 

  21. M.-S. Liao and S. Scheiner, J. Chem. Phys., 114, 9780–9791 (2001).

    Article  ADS  Google Scholar 

  22. S. G. Semenov and M. E. Bedrina, Zh. Obshch. Khim., 79, 1382–1389 (2009).

    Google Scholar 

  23. B. Assmann, G. Ostendorp, G. Lehmann, and H. Homborg, Z. Anorg. Allg. Chem., 622, 1085–1096 (1996).

    Article  Google Scholar 

  24. C. Murray, N. Dozova, J. G. McCaffrey, S. Fitzgerald, N. Shafizadeh, and C. Crepin, Phys. Chem. Chem. Phys., 12, 10406–10422 (2010).

    Article  Google Scholar 

  25. S. Matsumoto, K. Matsuhama, and J. Mizuguchi, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 55, 131–133 (1999).

    Article  Google Scholar 

  26. Y. B. Vysotsky, V. A. Kuzmitsky, and K. N. Solovyov, Theor. Chim. Acta, 59, 467–485 (1981).

    Article  Google Scholar 

  27. M. Gouterman, J. Mol. Spectrosc., 6, 138–163 (1961).

    Article  ADS  Google Scholar 

  28. N. Kobayashi, S.-I. Nakajima, H. Ogata, and T. Fukuda, Chem. Eur. J., 10, 6294–6312 (2004).

    Article  Google Scholar 

  29. K. Toyota, J. Hasegawa, and H. Nakatsuji, J. Phys. Chem. A, 101, 446–451 (1997).

    Article  Google Scholar 

  30. J. Berkowitz, J. Chem. Phys., 70, 2819–2829 (1979).

    Article  ADS  Google Scholar 

  31. V. Novakova, P. Reimerova, J. Svec, D. Suchan, M. Miletin, H. M. Rhoda, V. N. Nemykin, and P. Zimcik, Dalton Trans., 44, 13220–13233 (2015).

    Article  Google Scholar 

  32. R. P. Linstead and M. Whalley, J. Chem. Soc., 4839–4846 (1952).

  33. A. B. P. Lever, in: H. J. Emeleus and A. G. Sharpe (Eds.), Advances in Inorganic Chemistry and Radiochemistry, 7, 27–114 (1965).

  34. E. A. Makarova, G. V. Koroleva, and E. A. Luk’yanets, Zh. Org. Khim., 69, 1356–1361 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kuzmitsky.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 5, pp. 723–734, September–October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmitsky, V.A., Volkovich, D.I., Gladkov, L.L. et al. Quantum-Chemical Calculations of the Geometric Structures and Electronic Spectra of Phthalocyanines MgPc and H2Pc and Their β-Octaphenyl Derivatives. J Appl Spectrosc 85, 829–839 (2018). https://doi.org/10.1007/s10812-018-0725-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0725-2

Keywords

Navigation