Canadian Anaesthetists’ Society Journal

, Volume 26, Issue 4, pp 282–287 | Cite as

Cardiovascular signs of acute hypoxaemia and hypercarbia during enflurane and halothane anaesthesia in man

  • P. Manninen
  • R. L. Knill


We investigated the impact of enflurane and halothane (1.1 MAC) on heart rate and blood pressure responses to experimental hypoxaemia (PetO2 6.0 kPa [45 torr]) and small increments in Pco2 (1.3-1.6 kPa [10-12 torr]). The results reaffirm that circulatory signs of mild hypercarbia are virtually abolished by these anaesthetics. The important new observation is that signs of acute moderate hypoxaemia are also markedly depressed. Although potential modifying factors such as surgical stimulation were not evaluated, this study indicates that human subjects anaesthetized with enflurane or halothane lack reliable cardiovascular signs of acute hypoxaemia.


Halothane Enflurane Heart Rate Response Blood Pressure Response Apply Physiology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Nous avons étudié chez de jeunes volontaires ľinfluence de ľenflurane et de ľhalothane (à 1.1 MAC) sur les réponses circulatoires (fréquence cardiaque et pression artérielle), à ľhypoxémie expérimentale (Po2 de fin ďexpiration à 6 kPa (45 torr) et à de modestes élévations de Pco2 (1.3-1.6 kPa [10-12 torr]). Nos résultats confirment que les signes ďhypercarbie sont virtuellement abolis par les deux agents étudiés. Nous avons pu mettre en évidence ľobservation importante que les signes ďhypoxie modérée aiguë sont également très atténués. Bien que nous n’ayons pas évalué ľinfluence de la stimulation chirurgicale, notre étude signale que chez ľhumain anesthésié à ľhalothane et à ľenflurane, il n’existe pas de signes circulatoires fiables en cas ďhypoxémie aiguë.


  1. 1.
    Korner, P.I. Circulatory adaptations in hypoxia. Physiological Reviews39: 687 (1959).PubMedGoogle Scholar
  2. 2.
    Kontos, H.A., Levasseur, J.E., Richardson, D.W., Mauck, H.P. &Patterson, J.L. Comparative circulatory responses to systemic hypoxia in man and in anaesthetized dog. Journal of Applied Physiology23 (3): 381 (1967).PubMedGoogle Scholar
  3. 3.
    Cullen, D.J. &Eger, E.l. II. Cardiovascular effects of carbon dioxide in man. Anesthesiology41: 345 (1974).PubMedGoogle Scholar
  4. 4.
    Price, H.L. Effects of carbon dioxide on the cardiovascular system. Anesthesiology21: 652 (1968).Google Scholar
  5. 5.
    Bahlman, S.H., Eger, E.I. II, Halsey, M.J., Stevens, W.C., Shakespeare, T.F., Smith, N.T., Cromwell, T.H. &Fourcade, H. The cardiovascular effects of halothane in man during spontaneous ventilation. Anesthesiology36: 494 (1972).PubMedCrossRefGoogle Scholar
  6. 6.
    Price, H.L., Lurie, A.A., Black, G.W., Sechzer, P.H., Linde, H.W. &Price, M.L. Modification by general anaesthetics (cyclopropane and halothane) of circulatory and sympathoadrenal responses to respiratory acidosis. Annals of Surgery152: 1071 (1960).PubMedGoogle Scholar
  7. 7.
    Read, D.J.C. A clinical method for assessing the ventilatory response to CO2. Australasian Ann. Med.16: 20 (1967).Google Scholar
  8. 8.
    Knill, R.L. &Gelb, A.W. Ventilatory responses to hypoxia and hypercarbia during halothane sedation and anaesthesia in man. Anesthesiology49: 244 (1978).PubMedCrossRefGoogle Scholar
  9. 9.
    Weil, T.V., Byrne-Quinn, E. &Sodal, W. Hypoxic ventilatory drive in normal man. Journal of Clinical Invest.49: 1061 (1970).CrossRefGoogle Scholar
  10. 10.
    Dripps, K.D. &Comroe, J.H.L. The effect of the inhalation of high and low oxygen concentrations on respiration, pulse rate, ballistocardiogram and arterial oxygen saturation (oximeter) of normal individuals. The American Journal of Physiology149: 277 (1947).PubMedGoogle Scholar
  11. 11.
    Gelb, A.W. &Knill, R.L. Subanaesthetic halothane: its effect on regulation of ventilation and relevance to the recovery room. Canad. Anaesth. Soc. J.25: 488 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    Kontos, H.A., Mauck, H.P., Richardson, D.W. &Patterson, J.L. Mechanism of circulatory responses to systemic hypoxia in the anaesthetized dog. American Journal of Physiology209 (2): 397 (1965).PubMedGoogle Scholar
  13. 13.
    Krasney, J.A. &Koehler, R.C. Influence of arterial hypoxia on cardiac and coronary dynamics in the conscious sinoaortic-denervated dog. Journal of Applied Physiology43 (6): 1012 (1977).PubMedGoogle Scholar
  14. 14.
    Cullen, D.J. &Eger, E.I. II. The effects of halothane on respiratory and cardiovascular responses to hypoxia in dogs. Anesthesiology33: 487 (1970).PubMedCrossRefGoogle Scholar
  15. 15.
    Nisbet, H.I.A., Gray, I.G., Olley, P.M. &Johnston, A.E. Cardiovascular and respiratory responses to severe hypoxemia during anaesthesia. Canad. Anaesth. Soc. J.19: 339 (1972).PubMedCrossRefGoogle Scholar
  16. 16.
    Gray, I.G., Nisbet, H.I.A., Olley, P.M., Welsh, B.E. &Johnston, A.E. Cardiovascular and respiratory responses to severe hypoxemia under anaesthesia. Canad. Anaesth. Soc. J.20: 637 (1973).PubMedCrossRefGoogle Scholar
  17. 17.
    Rahn, H. &Otis, A.B. Alveolar air during simulated lights to high altitudes. American Journal of Physiology150: 202 (1947).PubMedGoogle Scholar
  18. 18.
    Jones, J.R., Sandhu, R.S. &Adwers, J.R. Acute hypoxia: tachycardia or bradycardia? Circulation 32 (suppl. 2): 120 (1965).Google Scholar
  19. 19.
    Birt, C. &Cole, P. Some physiological effects of closed circuit halothane anaesthesia. Anaesthesia20: 258 (1965).CrossRefGoogle Scholar
  20. 20.
    Read, D.J.C. &Leigh, J. Blood-brain tissue Pco2 relationships and ventilation during rebreathing. Journal of Applied Physiology23 (1): 53 (1967).PubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1979

Authors and Affiliations

  • P. Manninen
    • 1
  • R. L. Knill
    • 1
  1. 1.Department of AnaesthesiaUniversity Hospital, University of Western OntarioLondonCanada

Personalised recommendations