Coupling of effector molecules to solid supports

Development of an alternative to the cyanogen bromide activation of polysaccharides
  • T. C. J. Gribnau
  • G. I. Tesser
  • R. J. F. Nivard


In view of the limited stability of the isourea bond, formed in ligand coupling to CNBractivated polysaccharides, an alternative to this current activation method has been developed. 2,4,6-Trifluoro-5-chloropyrimidine (FCP), known as a reactive group in reactive dyes, was used to activate Sepharose. Under appropriate conditions a thermally stable product with unimpaired beaded structure was obtained, which was reactive toward amines and mercaptans. Coupling with hexamethylenediamine, aniline, and ethanethiol, respectively, yielded an incorporation of 0.2-2.7, 0.9-1.7, and 1.1 mmol ligand/g dry agarose. The stability of immobilized ligands based on FCP-Sepharose between pH 4 and 8 was about 200 times higher as compared to products originating from CNBr-Sepharose; ligand leakage was only 0.5 x 10p-3%/h. The possibility of obtaining a high degree of substitution is a further advantage of the FCP activation. In addition, the FCP-activated Sepharose can be stored in the wet state at 4°C without substantial decrease in coupling capacity. The FCP analogs 2,4,5,6-tetrachloro- and 2,4,5,6-tetrafluoropyrimidine, and other polymers (cellulose, Sephadex, aminomethylpolystyrene) appeared to be applicable also.


Effector Molecule Mercaptan Fluorine Content Ethanethiol Cyanuric Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cuatrecasas, P., WilCHEK, M., andAnfinsen, C. B. (1968) Proc. Natl. Acad. Sci. U.S.A. 61: 636.CrossRefGoogle Scholar
  2. 2.
    Jakoby, W. B., andWilchek, M. (eds.) (1974) Methods in Enzymology, Vol. 34B, Academic Press, New York.Google Scholar
  3. 3.
    Lowe, C. R., andDean, P. D. G. (1974) Affinity Chromatography, Wiley, London.Google Scholar
  4. 4.
    Porath, J., andKristiansen, T. (1975)In The Proteins, Vol. I,Neurath, H., andHill, R. L. (eds.), Academic Press, New York, p. 95.Google Scholar
  5. 5.
    Gribnau, T. C. J. (1977) Thesis, Nijmegen.Google Scholar
  6. 6.
    Cuatrecasas, P., andParikh, I. (1972) Biochemistry 11: 2291.CrossRefGoogle Scholar
  7. 7.
    Ludens, J. H., Vries, De J. R., andFanestil, D. D. (1972), J. Biol. Chem. 247: 7533.Google Scholar
  8. 8.
    Rosner, W., andSmith, R. N. (1975) Biochemistry 14: 4813.CrossRefGoogle Scholar
  9. 9.
    Best-Belpomme, M., Richard-Foy, H., Secco-Millet, C, andBaulieu, E.-E. (1976) Biochimie 58: 863.CrossRefGoogle Scholar
  10. 10.
    Yong, M. S. (1973) Science 182: 157.CrossRefGoogle Scholar
  11. 11.
    Hofstee, B. H. J. (1974) “Immobilized Biochemicals and Affinity Chromatography,”In Adv. Exp. Med. Biol., Vol. 42,Dunlap, R. B. (ed.), Plenum Press, New York, p. 43.Google Scholar
  12. 12.
    Schnapp, J., andShalitin, Y. (1976) Biochem. Biophys. Res. Commun. 70: 8.CrossRefGoogle Scholar
  13. 13.
    Davidson, M. B., Herle, Van A. J., andGerschenson, L. E. (1973) Endocrinology 92: 1442.CrossRefGoogle Scholar
  14. 14.
    Kolb, H. J., Renner, R., Hepp, K. D., Weiss, L., andWieland, O. H. (1975) Proc. Natl. Acad. Sci. U.S.A. 72: 248.CrossRefGoogle Scholar
  15. 15.
    Tesser, G. I., Fisch, H.-U., andSchwyzer, R. (1974) Helv. Chim. Acta 57: 1718.CrossRefGoogle Scholar
  16. 16.
    Tesser, G. I., Fisch, H.-U., andSchwyzer, R. (1972) FEBS Lett. 23: 56.CrossRefGoogle Scholar
  17. 17.
    Gribnau, T. C. J., andTesser, G. I. (1974) Experientia 30: 1228.CrossRefGoogle Scholar
  18. 18.
    Lasch, J. (1975) Experientia 31: 1125.CrossRefGoogle Scholar
  19. 19.
    Karrer, P., andWehrli, W. (1926) Helv. Chim. Acta 9: 591; (1926) Angew. Chem. 39 : 1509.CrossRefGoogle Scholar
  20. 20.
    Peacock, T. E. (1965) Electronic Properties of Aromatic and Heterocyclic Molecules, Academic Press, New York, p. 103.Google Scholar
  21. 21.
    Zollinger, H. (1961) Angew. Chem. 73: 125.CrossRefGoogle Scholar
  22. 22.
    Warren, J., Reid, J. D., andHamalainen, C. (1952) Textile Res. J. 22: 584.CrossRefGoogle Scholar
  23. 23.
    Rattee, I. D., andStephen, W. E. (1960) J. Soc. Dyers Colour. 76: 6; see also Refs. 26 and 28.Google Scholar
  24. 24.
    Preston, C, andFern, A. S. (1961) Chimia 15: 177.Google Scholar
  25. 25.
    Beckmann, W., Hildebrand, D., andPesenecker, H. (1962) Melliand Textilber. 43: 1304.Google Scholar
  26. 26.
    Hildebrand, D. (1972)In The Chemistry of Synthetic Dyes VI,Venkataraman, K. (ed.), Academic Press, New York, p. 327.Google Scholar
  27. 27.
    Dawson, T. L., Fern, A. S., andPreston, C. (1960) J. Soc. Dyers Colour. 76: 210.Google Scholar
  28. 28.
    Senn, R. Ch., andZollinger, H. (1963) Helv. Chim. Acta 46: 781.Google Scholar
  29. 29.
    Beech, W. F. (1970) Fibre-Reactive Dyes, Logos Press, London.Google Scholar
  30. 30.
    Ackermann, H., andDussy, P. (1962). Helv. Chim. Acta 45: 1683.CrossRefGoogle Scholar
  31. 31.
    Schroeder, H., Kober, E., Ulrich, H., RÄtz, R., Agahigian, H., andGrundmann, C. (1962) J. Org. Chem. 27: 2580.CrossRefGoogle Scholar
  32. 32.
    Siegel, E. (1972)In The Chemistry of Synthetic Dyes VI,Venkataraman, K. (ed.), Academic Press, New York, p. 1.Google Scholar
  33. 33.
    Hildebrand, D., andMeier, G. (1971) Textil-Praxis 26:499, 557; (1971) Bayer Farbenrevue, Nr. 20: 12.Google Scholar
  34. 34.
    Altenhofen, U. (1975) Thesis, Aachen.Google Scholar
  35. 35.
    Shore, J. (1968) J. Soc. Dyers Colour. 84: 408, 413, 545.Google Scholar
  36. 36.
    Reinert, G. R., Mella, K., Rouette, P. F., andZahn, H. (1968) Melliand Textilber. 49:1313.Google Scholar
  37. 37.
    Gribnau, T. C. J. (1978)In Chromatography of Synthetic and Biological Polymers,Epton, R. (ed.), Vol. 2: Hydrophobic, Ion-Exchange and Affinity Methods, J. Wiley & Sons, London, p. 258.Google Scholar
  38. 38.
    Reindel, F., andHoppe, W. (1953) Naturwissenschaften 40: 221; (1954) Chem. Ber. 87:1103.CrossRefGoogle Scholar
  39. 39.
    Porath, J., Janson, J.-C, andLÅÅs, T. (1971) J. Chromatogr. 60: 167.CrossRefGoogle Scholar
  40. 40.
    See, e.g.,Rattee, I. D., andBreuer, M.M. (1974) The Physical Chemistry of Dye Adsorption, Academic Press, New York.Google Scholar
  41. 41.
    cf.Mark, H. (1932)In Technologie der Textilfasern, Vol. I,Herzog, R. O. (ed.), Part I: Physik und Chemie der Cellulose, Springer-Verlag, Berlin, p. 214.Google Scholar
  42. 42.
    Smith, N. L., andLenhoff, H. M. (1974) Anal. Biochem, 61: 392.CrossRefGoogle Scholar
  43. 43.
    Wilchek, M. (1973) FEBS Lett. 33: 70.CrossRefGoogle Scholar
  44. 44.
    Yaron, A., Otey, M. C, Katchalski, E., Ehrlich-Rogozinsky, S., andBerger, A. (1972) Biopolymers 11: 607.CrossRefGoogle Scholar
  45. 45.
    Yon, R. J., andSimmonds, R. J. (1975) Biochem. J. 151: 281.Google Scholar
  46. 46.
    Horrobin, S. (1963) J. Chem. Soc. 4130.Google Scholar
  47. 47.
    Tesser, G. I., andBalvert-Geers, I. C. (1975) Int. J. Peptide Protein Res. 7: 295.Google Scholar
  48. 48.
    Hofmann, K., Finn, F. M., Friesen, H.-J., Diaconescu, C, andZahn, H. (1977) Proc. Natl. Acad. Sci. U.S.A. 74: 2697.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1978

Authors and Affiliations

  • T. C. J. Gribnau
    • 1
  • G. I. Tesser
    • 1
  • R. J. F. Nivard
    • 1
  1. 1.Department of Organic ChemistryCatholic UniversityToernooiveldThe Netherlands

Personalised recommendations