Skip to main content
Log in

Bioelectrosynthesis as an alternative to photosynthesis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The CO2 reduction processes have been discussed as a way of designing an ecologically totally closed technology. An electric current and molecular hydrogen are the two related available agents that can be discussed as ecologically pure reductants. The most important products are liquid and gaseous fuels, the products of large-scale organic synthesis, monomers, and amino acids. For CO2 reduction, the necessary energy consumption and H2 costs were calculated. For complex organic molecules, amino acids for instance, the energy consumption does not make up the main portion of the costs.

The biocatalytic systems of CO2 reduction based on cryoimmobilized cells are described. Conversion of CO2 into L-lysine with electrochemical decomposition of water was effected on the laboratory scale. A general unit for diverse technological processes can be a bioelectrosynthetic Index Entries: Bioelectrosynthesis; CO2 reduction; liquid fuels; amino acids; immobilized cells; economic estimates. modulus, an electrochemical hydrogen generator coupled with a biocatalytic converter of hydrogen and oxygen. The systems for bioelectrosynthesis of motor fuels and essential amino acids have been economically estimated and characterized. The possibilities of combining the solar energy transformation and H2–CO2 conversion have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steinhart, J. S. and Steinhart, C. E. (1974),Science 184, 307–316.

    Article  CAS  Google Scholar 

  2. Pimentel, D., Dritschilo, W., Krummel, J., and Kutzman, J. (1975),Science 190, 754–761.

    Google Scholar 

  3. Pimentel, D., Hurd, L. E., Belloti, A. C., Forster, M. J., Oka, I. N., Sholes, O. D., and Whitman, R. J. (1973),Science 182, 443–449.

    Article  Google Scholar 

  4. Mercer, J. H. (1978),Nature 271, 321–325.

    Article  Google Scholar 

  5. Rotty, R. M. (1978),Resources and Energy 1, 231–249.

    Article  Google Scholar 

  6. Wigley, T. M. L. and Schlesinger, M. E. (1980),Nature 283, 17–21.

    Article  CAS  Google Scholar 

  7. Houghton, R. A. and Woodwell, G. M. (1989),Scientific Am. 260, 6–15.

    Google Scholar 

  8. Stuart, A. T. (1927),Industrial and Eng. Chem. 19, 1321–1324.

    Article  CAS  Google Scholar 

  9. Bockris, J. O’M. (1980),Energy Options, Taylor Francis, London, pp. 257–310.

    Google Scholar 

  10. Bockris, J. O’M. and Veziroglu, T. N. (1983),Int. J. Hydrogen Energy 8, 323–340.

    Article  Google Scholar 

  11. Bockris, J. O’M., Dandapani, B., Cocke, D., and Ghoroghchian, (1985),Int. J. Hydrogen Energy 10, 179–203.

    Article  CAS  Google Scholar 

  12. Bockris, J.O’M. and Dandapani, B. (1987),Int. J. Hydrogen Energy 12, 439–444.

    Article  Google Scholar 

  13. Justi, E. W., Brennecke, P. W., et al. (1987),A Solar-Hydrogen Energy System, Plenum, London, p. 334.

    Google Scholar 

  14. Winter, C. J. (1987),Int. J. Hydrogen Energy 12, 521–546.

    Article  CAS  Google Scholar 

  15. Bockris, J.O’M. and Wass, J. C. (1988),Hydrogen Energy Progress VII, Proceedings of the 7th World Hydrogen Energy Conference, Moscow, USSR, Sept. 25-29, vol.1, pp. 101–151.

  16. Varfolomeyev, S. D. (1980), Konversiya energiyi biokataliticheskimi sistemami, Moscow, MGU, p. 256 (Russian).

  17. Varfolomeyev, S. D., Rainina, E. I., Lozinsky, V. I., Kaluzhny, S. V., Sinitsyn, A. P., Makhlis, T. A., Bachurina, G. P., Bokova, I. G., Sklyankina, O. A., and Agafonov, E. B. (1989),Physiology of Immobilized Cells, Proceedings of International Symposium Elsevier Science Publishers, B. V. Amsterdam, pp. 325–330.

    Google Scholar 

  18. Pirt, S. J. (1975),Principles of Microbe–and Cell Cultivation, Blackwell Scientific Publications, Oxford, London, Edinburgh, p. 331.

    Google Scholar 

  19. Pechurkin, N. S. and Terskov, I. A. (1975), Analis kinetiki rosta i evolyuciyi microbnyh populyacyi, Nauka, Novosibirsk, p. 215 (Russian).

    Google Scholar 

  20. Varfolomeyev, S. D. and Kalyuzhni, S. V. (1990),Kineticheskiye Osnovy Mikrobiologicheskih Processov, Vysshaya Shkola, Moscow, p. 295 (Russian).

    Google Scholar 

  21. Mosbach, K., ed. (1987),Methods in Enzymology, vol. 135, Academic, New York, p. 350.

    Google Scholar 

  22. Chibata, I. and Tosa, T. (1980),Trends in Biochem. Sci. 5, 88–90.

    Article  CAS  Google Scholar 

  23. Woodward, J., ed. (1985),Immobilised Cells and Enzymes: A Practical Approach, IRL, Oxford-Washington, DC, p. 210.

    Google Scholar 

  24. Berezin, I. V., Bogdanovskaya, V. A., Varfolomeyev, S. D., Tarasevich, M. R., and Yaropolov, A. I. (1978),Dokl. Akad. Nauk SSSR 240, 615–618 (Russian).

    CAS  Google Scholar 

  25. Berezin, I. V., Varfolomeyev, S. D., and Lomonosov, M. V. (1980),Enzyme Eng., vol. 5, Weetall, H. and Royer, J., eds., Plenum, New York, pp. 95–100.

    Google Scholar 

  26. Varfolomeyev, S. D. and Berezin, I. V. (1978),J. Mol. Cat. 4, 387–400.

    Article  Google Scholar 

  27. Varfolomeyev, C. D. (1988),Methods in Enzymology,137, pp. 430–440.

    Article  Google Scholar 

  28. Yaropolov, A. I., Malovik, V. B., Varfolomeyev, S. D., and Berezin, I. V. (1979),Dokl. Akad. Nauk SSSR 249, 1399–1401 (Russian).

    CAS  Google Scholar 

  29. Yaropolov, A. I., Karyakin, A. A., Gogotov, I. N., Zorin, N. A., Varfolomeyev, S. D., and Berezin, I. V. (1984),Dokl. Akad. Nauk SSSR 274, 1434–1437 (Russian).

    CAS  Google Scholar 

  30. Tarasevich, M. R., Yaropolov, A. I., Bogdanovskaya, V. A., and Varfolomeyev, S. D. (1979),J. Electroanal. Chem. 104, 393–403.

    Article  Google Scholar 

  31. Varfolomeyev, S. D., Yaropolov, A. I., Berezin, I. V., Tarasevich, M. R., and Bogdanovskaya, V. A. (1977),Bioelectrochem. Bioenerg. 4, 314–326.

    Article  Google Scholar 

  32. Yaropolov, A. I., Suhomlin, T. K., Karyakin, A. A., Varfolomeyev, S. D., and Berezin, I. V. (1981),Dokl. Akad. Nauk SSSR 260, 1192–1195 (Russian).

    CAS  Google Scholar 

  33. Varfolomeyev, S. D. and Berezin, I. V. (1982),Advances in Phys. Chemistry: Current Development in Electrochemistry and Corrosion, Kolotyrkin, J. M., ed., Mir, Moscow, pp. 60–95.

    Google Scholar 

  34. Varfolomeyev, S. D. and Berezin, I. V. (1982),Phys. Khimiya: Sovremennye Problemy, Kolotyrkin, J. M., ed., Khimiya, Moscow, pp. 68–95 (Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varfolomeyev, S.D. Bioelectrosynthesis as an alternative to photosynthesis. Appl Biochem Biotechnol 33, 145–155 (1992). https://doi.org/10.1007/BF02950783

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02950783

Index Entries

Navigation