Skip to main content
Log in

Genetics of mosquitoes

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Beginning in the mid-1950s, much progress has been made in studying various aspects of the genetics of mosquitoes, particularly involving several species of three principal genera,Aedes, Culex andAnopheles, that transmit important human diseases. Here I discuss selected areas of research involving formal genetics; genome structure, organization and evolution at the interspecific and intraspecific level; and evolutionary genetics of theAedes scutellaris group. Information and insights gained from in-depth analyses of these areas, particularly transmission genetics, cytogenetics and genetics of chromosomal rearrangements, and of mutagen-induced sexual sterility, have proved invaluable for the development of the theory and evaluation of feasibility of genetic control of natural populations. As a result, mosquitoes represent some of the best studied taxa at various levels of genetic organization. Recent developments in molecular genetics offer exciting possibilities for extension of these concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antolin M. R, Bosio C. R, Cotton J, Sweeney W. P, and Black W. C, IV 1996 Rapid and dense linkage mapping in a wasp (Bracon hebetor) and a mosquito (Aedes aegypti) with Single Strand Conformation Polymorphisms Analysis of Random Amplified Polymorphic DNA markers.Genetics 143, 1727–1738.

    PubMed  CAS  Google Scholar 

  • Baimai V, 1988 Constitutive heterochromatin differentiation and evolutionary divergence of karyotype in OrientalAnopheles (Cellia).Pac. Sci,42, 13–27.

    Google Scholar 

  • Baimai V, Kijchalao U, and Rattanarithikul R, 1996 Metaphase karyotypes ofAnopheles of Thailand and Southeast Asia. VI. The Pyretophorus and the Neomyzomyia series, subgenusCellia (Diptera: Culicidae).J. Am. Mosq. Cont. Assoc,12, 669–675.

    CAS  Google Scholar 

  • Baker R. H, Sakai R. K, and Mian A, 1971 Linkage groupchromosome correlation in a mosquito: translocations inCulex tritaeniorhynchus.J. Hered,62, 90–100.

    PubMed  Google Scholar 

  • Bat-Miriam M, and Craig G. B, Jr 1966 Mutants inAedes albopictus (Diptera: Culicidae).Mosq. News 26, 13–22.

    Google Scholar 

  • Besansky N. J, and Powell J. R, 1992 Reassociation kinetics ofAnopheles gambiae (Diptera: Culicidae) DNA.J. Med. Entomol,29, 125–128.

    PubMed  CAS  Google Scholar 

  • Besansky N. J, Finnerty V J, and Collins R H, 1992 Molecular perspectives on the genetics of mosquitoes.Adv. Genet,30, 123–184.

    Article  PubMed  CAS  Google Scholar 

  • Bhalla S. C, 1968 White-eye, a new sex-linked mutant inAedes aegypti.Mosq. News 28, 380–385.

    CAS  Google Scholar 

  • Black W. C, IV and Rai K. S, 1988 Genome evolution in mosquitoes; intraspecific and interspecific variation in repetitive DNA amounts and organization.Genet. Res,51, 185–196.

    PubMed  Google Scholar 

  • Brown A. W. A, and Pal R, 1971Insecticide resistance in arthropods. World Health Organization, Geneva.

    Google Scholar 

  • Carlson J. O, 1996 Molecular genetic manipulation of vectors. InThe biology of disease vectors (ed, B. J., Beaty and W. C., Marquardt), pp. 215–228. University Press of Colorado, Niwot, USA,

    Google Scholar 

  • Charlesworth B, 1978 A model for the evolution of Y chromosomes and dosage compensation.Proc. Natl. Acad. Sci. USA 75, 5618.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Langley C. H, and Stepan W, 1986 The evolution of restricted recombination and the accumulation of repeated DNA sequences.Genetics 112, 947–962.

    PubMed  CAS  Google Scholar 

  • Craig G. B, Jr 1965 The contribution ofAedes aegypti research to the advancement of biological science. In ‘Symposium on the Rradication ofAedes aegypti from the United States’.Am. J. Trop. Med. Hyg,14, 904–908.

    PubMed  Google Scholar 

  • Craig G. B, Jr and Gillham M. V 1959 The inheritance of larval pigmentation inAedes aegypti.J. Hered,50, 115–123.

    Google Scholar 

  • Craig G. B, Jr and Hickey W. A, 1967 Genetics ofAedes aegypti, InGenetics of insect vectors of disease (ed, J, Wright and R, Pal), pp. 67–131. Rlsevier, Amsterdam.

    Google Scholar 

  • Craig G. B, Jr and VandeHey R. C, 1960 An inherited maleproducing factor inAedes aegypti.Science 132, 1887–1889.

    Article  PubMed  Google Scholar 

  • Craig G. B, Jr and VandeHey R. C, 1962 Genetic variability inAedes aegypti. I. Mutations affecting color pattern.Ann. Entomol. Soc. Am,55, 47–58.

    Google Scholar 

  • Crampton J. M, 1992 Potential application of molecular biology in entomology. InInsect molecular science (ed, J. M, Crampton and P, Rggleston), pp. 4–20. Academic Press, London.

    Google Scholar 

  • Crampton J. M, and Rggleston P, 1992 Biotechnology and the control of mosquitoes. InAnimal parasite control utilizing biotechnology (ed, W. K, Yong), pp. 333–350. CRC Press, Boca Raton.

    Google Scholar 

  • Curtis C. R 1992 Selfish genes in mosquitoes.Nature 357, 450.

    Article  PubMed  CAS  Google Scholar 

  • Dennhofer L, 1972 Die Zuordnung der Koppelungsgruppen zu den Chromosomen bei der StechmiickeCulex pipiens L.Chromosoma 37, 43–52.

    Article  PubMed  CAS  Google Scholar 

  • Dev V and Rai K. S, 1982 Genetics of speciation in theAedes (Stegomyia) scutellaris group (Diptera: Culicidae). I. Crossing relationships among six species. InEvolutionary significance of insect polymorphism (ed, M. W, Stock and A. C, Bartlett), pp. 85–109. University of Idaho Press, Moscow, USA,

    Google Scholar 

  • Dev V and Rai K. S, 1984 Genetics of speciation in theAedes (Stegomyia) scutellaris group. 5. Chromosomal relationships among five species.Genetica 64, 83–92.

    Article  Google Scholar 

  • Dev V and Rai K. S, 1985 Genetic relationships among certain species of theAedes (Stegomyia) scutellaris group (Diptera: Culicidae).Ann. Trop. Med. Parasitol,79, 325–331.

    PubMed  CAS  Google Scholar 

  • Rdwards R W, 1932 Diptera, family Culicidae. InGenera Insectorum (ed, P. A. G, Wytsman), Fasc.194. Desmet. Verteneuill, Brussels.

    Google Scholar 

  • Ferdig M. T, Taft A. G, Severson D. W, and Christensen B. M, 1998 Development of a comparative genetic linkage map forArmigeres subalbatus usingAedes aegypti RFLP markers.Genome Res,8, 41–47.

    PubMed  CAS  Google Scholar 

  • Ferrari J, and Rai K. S, 1989 Phenotypic correlates of genome size variation inAedes albopictus.Evolution 43, 895–899.

    Article  Google Scholar 

  • Gatti M, Santini G, Pimpinelli S, and Coluzzi M, 1977 Fluorescence banding techniques in the identification of sibling species of theAnopheles gambiae complex.Heredity 38, 105–108.

    Article  PubMed  CAS  Google Scholar 

  • Gilcrist B. M, and Haldane J. B. S, 1947 Sex linkage and sex determination in a mosquito,Culex molestus. Hereditas 33, 175.

    Google Scholar 

  • Hartberg W. K, and Craig G. B, Jr 1974 Three new mutants inAedes mascarensis: Currant-eye, small-antenna and yellow.J. Med. Entomol,11, 447–454.

    PubMed  CAS  Google Scholar 

  • Hickey W. A, and Craig G. B, Jr 1966 Genetic distortion of sex ratio in a mosquito,Aedes aegypti. Genetics 53, 1177–1196.

    CAS  Google Scholar 

  • Hilburn L, and Rai K. S, 1981 Electrophoretic similarities and mating compatibility among four species of theAedes (Stegomyia) scutellaris complex (Diptera: Culicidae).j. Med. Entomol,18, 401–408.

    Google Scholar 

  • Hubby J. B, and Lewontin R. C, 1966 A molecular approach to the study of genetic heterozygosity in natural populations. 1. The number of alleles at different loci inDrosophila pseudoobscura.Genetics 54, 577–594.

    PubMed  CAS  Google Scholar 

  • Jost E, and Mameli M, 1972 DNA content of nine species of Nematocera with special reference to the sibling species of theAnopheles maculipennis group and theCulex pipiens group.Chromosoma 37, 201–208.

    Article  PubMed  CAS  Google Scholar 

  • Kambhampati S, and Rai K. S, 1991 Variation in mitochondrial DNA ofAedes species (Diptera: Culicidae).Evolution 45, 120–129.

    Article  Google Scholar 

  • Kidwell M. G, and Ribeiro J. M. C, 1992 Can transposable elements be used to drive disease refractoriness genes into vector populations?Parasitol. Today 8, 325–329.

    Article  PubMed  CAS  Google Scholar 

  • Kitzmiller J. B, 1953 Mosquito genetics and cytogenetics.Separata da Rev. Bras, de Malarial, e D. Trop,5, 285–359.

    CAS  Google Scholar 

  • Knudson D. L, Zheng L, Gordon S. W, Brown S. E, and Kafatos E C, 1996 Genome organization of vectors. InThe Biology of disease vectors (ed, B. J, Beaty and W. C, Marquardt), pp. 175–214. University Press of Colorado, Niwot, USA,

    Google Scholar 

  • Kreutzer R. D, 1978 A mosquito with eight chromosomes:Chagasia bathana Dyar.Mosq. News 38, 554–558.

    Google Scholar 

  • Kumar A, and Rai K. S, 1990 Intraspecific variation in nuclear DNA content among world populations of a mosquito,Aedes albopictus (Skuse).Theor. Appl. Genet,79, 748–752.

    Article  Google Scholar 

  • Kumar A, and Rai K. S, 1993 Molecular organization and evolution of mosquito genomes.Comp. Biochem. Physiol,B106, 495–504.

    Google Scholar 

  • Laven H, 1967 Formal genetics ofCulex pipiens. InGenetics of insect vectors of disease (ed, J. W, Wright and R, Pal), pp. 17–65. Elsevier, Amsterdam.

    Google Scholar 

  • McDonald P. T, and Rai K. S, 1970 Correlation of linkage groups with chromosomes in the mosquito,Aedes aegypti. Genetics 66, 475–485.

    CAS  Google Scholar 

  • McLain D. K, and Rai K. S, 1986 Reinforcement for ethological isolation in the southeast AsianAedes albopictus (Diptera: Culicidae) subgroup.Evolution 40, 1346–1350.

    Article  Google Scholar 

  • McLain D. K, Rai K. S, and Rao P. N, 1985 Ethological divergence in allopatry and asymmetrical isolation in the South PacificAedes scutellaris subgroup.Evolution 39, 998–1008.

    Article  Google Scholar 

  • McLain D. K, Rai K. S, and Fraser M. J, 1986 Interspecific variation in the abundance of highly repeated DNA sequences in theAedes scutellaris (Diptera: Culicidae) subgroup.Ann. Entomol. Soc. Am,79, 787–791.

    Google Scholar 

  • McLain D. K, Rai K. S, and Fraser M. J, 1987 Intraspecific and interspecific variation in the sequence and abundance of highly repeated DNA among mosquitoes of theAedes albopictus subgroup.Heredity 58, 373–381.

    Article  PubMed  CAS  Google Scholar 

  • Matthews T. C, and Craig G. B, Jr 1980 Genetic heterozygosity in natural populations of the tree-hole mosquitoAedes triseriatus.Ann. Entomol. Soc. Am,73, 739–743.

    Google Scholar 

  • Matthews T. C, and Munstermann L. E, 1983 Genetic diversity and differentiation in northern populations of the tree-hole mosquitoAedes hendersoni (Diptera: Culicidae).Ann Entomol. Soc. Am,76, 1005–1010.

    Google Scholar 

  • Matthews T. C, and Munstermann L. E, 1994 Chromosomal repatterning and linkage group conservation in mosquito karyotype evolution.Evolution 48, 146–154.

    Article  Google Scholar 

  • Miller L. H, Sakai R. K, Romans P, Gwadz R. W, Kantoff P, and Coon H. G, 1987 Stable integration and expression of a bacterial gene in the mosquitoAnopheles gambiae.Science 237, 779–781.

    Article  PubMed  CAS  Google Scholar 

  • Morell V, 1994 Rise and fall of the Y chromosome.Science 263, 171–172.

    Article  PubMed  CAS  Google Scholar 

  • Mori A, Severson D. W, and Christensen B. M, 1999 Comparative linkage maps for the mosquitoes,Culex pipiens andAedes aegypti, based on common RFLP loci.J. Hered,90, 160–164.

    Article  PubMed  CAS  Google Scholar 

  • Morris A. C, Eggleston P, and Crampton J. M, 1989 Genetic transformation of the mosquitoAedes aegypti by microinjection of DNA.Med. Vet. Entomol,3, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Motara M. A, 1982 Giemsa C-banding in four species of mosquitoes.Chromosoma 86, 319–323.

    Article  Google Scholar 

  • Motara M, and Rai K. S, 1977 Chromosomal differentiation in two species ofAedes and their hybrids revealed by Giemsa Cbanding.Chromosoma 64, 125–132.

    Article  Google Scholar 

  • Motara M, and Rai K. S, 1978 Giemsa C-banding patterns inStegomyia mosquitoes.Chromosoma 70, 51–58.

    Article  Google Scholar 

  • Munstermann L. E, 1980 Distinguishing geographic strains of theAedes atropalpus group (Diptera: Culicidae) by analysis of enzyme variation.Ann. Entomol. Soc. Am,73, 699–704.

    Google Scholar 

  • Munstermann L. E, and Craig G. B, Jr 1979 Genetics ofAedes aegypti. Updating the linkage map.J. Hered,70, 291–296.

    Google Scholar 

  • Munstermann L. E, Taylor D. B, and Matthews T. C, 1982 Population genetics and speciation in theAedes triseriatus group. InRecent developments in the genetics of disease vectors (ed, W. M, Steiner, W. J, Tabachnick, K. S, Rai and S, Narang), pp. 433–453. Stipes Publishing Company, Champaign, USA,

    Google Scholar 

  • Mutebi J. P, Black W. C, IV, Bosio C. E, Sweeney W. P, Jr and Craig G. B, Jr 1997 Linkage map for the Asian tiger mosquitoAedes (Stegomyia) albopictus, based on SSCP analysis of RAPD markers.J. Hered,88, 489–494.

    PubMed  CAS  Google Scholar 

  • Narang S, and Seawright J. E, 1982 Linkage relationships and genetic mapping inCulex andAnopheles. InRecent developments in the genetics of insect disease vectors (ed, W. M, Steiner, W. J, Tabachnick, K. S, Rai and S, Narang), pp. 231–289. Stipes Publishing Company, Champaign, USA,

    Google Scholar 

  • Pashley D, and Rai K. S, 1983 A comparison of allozyme and morphological relationships in someAedes (Stegomyia) mosquitoes.Ann. Entomol. Soc. Am,76, 388–394.

    Google Scholar 

  • Pashley D. P, Rai K. S, and Pashley D. N, 1985 Patterns of allozyme relationships compared with morphology, hybridization, and geologic history in allopatric island-dwelling mosquitoes.Evolution 39, 985–997.

    Article  Google Scholar 

  • Rai K. S, 1963 A comparative study of mosquito karyotypes.Ann. Entomol. Soc. Am,56, 160–170.

    Google Scholar 

  • Rai K. S, 1973 Genetic control of biting flies: Progress and prospects. InBiting fly control and environmental quality (ed, A, Hudson), pp. 79–88. University of Alberta, Edmonton, Canada.

    Google Scholar 

  • Rai K. S, 1996 Genetic control of vectors. InThe biology of disease vectors (ed, B. J, Beaty and W. C, Marquardt), pp. 564–574. University Press of Colorado, Niwot, USA,

    Google Scholar 

  • Rai K. S, 1999Four decades of vector biology at the University of Notre Dame; a scientific perspective. University of Notre Dame Press, Notre Dame, USA,

    Google Scholar 

  • Rai K. S, and Black W. C, IV 1999 Mosquito genomes: structure, organization, and evolution.Adv. Genet,41, 1–33.

    Article  PubMed  CAS  Google Scholar 

  • Rai K. S, Pashley D. P, and Munstermann L. E, 1982 Genetics of speciation in Aedine mosquitoes. InRecent developments in the genetics of insect disease vectors (ed, W. M, Steiner, W. J, Tabachnick, K. S, Rai and S, Narang), pp. 84–129. Stipes Publishing Company, Champaign, USA,

    Google Scholar 

  • Rao P. N, and Rai K. S, 1987a Comparative karyotypes and chromosomal evolution in some genera ofNematocerous (Diptera: Nematocera) families.Ann. Entomol. Soc. Am,80, 321–332.

    Google Scholar 

  • Rao P. N, and Rai K. S, 1987b Inter- and intraspecific variation in nuclear DNA content inAedes mosquitoes.Heredity 59, 253–258.

    Article  PubMed  Google Scholar 

  • Rao P. N, and Rai K. S, 1990 Genome evolution in the mosquitoes and other closely related members of superfamily Culicoidea.Hereditas 113, 139–144.

    Article  PubMed  CAS  Google Scholar 

  • Rice W. R, 1994 Degeneration of a nonrecombining chromosome.Science 263, 230–232.

    Article  PubMed  CAS  Google Scholar 

  • Rice W. R, 1996 Evolution of the Y chromosome in animals.Bioscience 46, 331–343.

    Article  Google Scholar 

  • Service M. W, 1993 Mosquitoes (Culicidae).In Medical insects and arachnids (ed, R. P, Lane and R. W, Crosskey), pp. 120–240, Chapman and Hall, New York.

    Google Scholar 

  • Severson D. W, Mori A, Zhang Y and Christensen B. M, 1993 Linkage map forAedes aegypti using restriction fragment polymorphism.J. Hered,84, 241–247.

    PubMed  CAS  Google Scholar 

  • Severson D. W, Mori A, Kassner V. A, and Christensen B. M, 1995 Comparative linkage maps for the mosquitoesAedes albopictus andAedes aegypti based on common RFLP loci.Insect Mol. Biol,4, 41–45.

    Article  PubMed  CAS  Google Scholar 

  • Sherron D, and Rai K. S, 1983 Genetics of speciation in theAedes (Stegomyia) scutellaris group (Diptera: Culicidae). 2. Crossing relationships ofAedes cooki with six sibling species.J. Med. Entomol,20, 520–522.

    Google Scholar 

  • Sherron D. A, and Rai K. S, 1984 Genetics of speciation in theAedes (Stegomyia) scutellaris group (Diptera: Culicidae). 4. Chromosomal relationships ofAedes cooki with four sibling species.Can. j. Genet. Cytol,26, 237–248.

    PubMed  CAS  Google Scholar 

  • Steinemann M, Steinemann S, and Lottspeich R 1993 How Y chromosomes become genetically inert.Proc. Natl. Acad. Sci. USA 90, 5737–5741.

    Article  PubMed  CAS  Google Scholar 

  • VandeHey R. C, and Craig G. B, Jr 1962 Genetic variability inAedes aegypti, II. Mutations causing structural modifications.Ann. Entomol. Soc. Am,55, 58–69.

    Google Scholar 

  • Warren A. M, and Crampton J. M, 1991 TheAedes aegypti genome: complexity and organization.Genet. Res,58, 225–232.

    Article  PubMed  CAS  Google Scholar 

  • Warren K. S, 1988 The global impact of parasitic diseases. InThe biology of parasitism pp. 3–12. Alan R. Liss, New York.

    Google Scholar 

  • Wells R, Royer H, and Hollenberger C. P, 1976 Non-Xenopus like DNA organization in theChironomus tentans genome.Mol. Gen. Genet,147, 45–51.

    Article  PubMed  CAS  Google Scholar 

  • White G. B, 1980 Academic and applied aspects of mosquito cytogenetics. InInsect cytogenetics (ed, R. L, Blackman, G. M, Hewitt and M, Ashburner), pp. 245–274. Blackwell Scientific, London.

    Google Scholar 

  • Wilson J. T, 1963 Continental drift.Sci. Am,208, 86–100.

    Article  Google Scholar 

  • World Health Organization (WHO) 1976 WHO-supported collaborative research projects in India: The facts.WHO Chron,30, 131–139.

    Google Scholar 

  • Zheng L, Benedict M. Q, Cornel A. J, Collins R H, and Kafatos R C, 1996 An integrated genetic map of the African human malaria vector mosquito,Anopheles gambiae.Genetics 143, 941–952.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karamjit S. Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karamjit, S.R. Genetics of mosquitoes. J. Genet. 78, 163–169 (1999). https://doi.org/10.1007/BF02934462

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02934462

Keywords

Navigation