Skip to main content
Log in

Genetic Methods of Insect Control: History and Current State

  • Published:
Russian Journal of Biological Invasions Aims and scope Submit manuscript

Abstract

The review considers the main stages in the development of the genetic method of insect control: (1) the idea of A.S. Serebrovsky, who suggested releasing males with nonviable translocations into nature; (2) “Z-lethal” method of V.A. Strunnikov for control of harmful Lepidoptera, which consists in the release of males carrying two nonallelic recessive mutations in the sex Z chromosomes into nature; (3) sterile insect technique (SIT) used widely in practice in the second half of the 20th century; (4) genetically engineered biotechnology RIDL (Release of Insects carrying a Dominant Lethal) used in practice to control the invasive mosquito Aedes aegypti, which is the vector of Zika viruses and yellow fever. It is generalized that the main opponent of the genetic method of insect control is natural selection, which supports females, choosing natural rather than sterile or “genetically modified” males for mating. It follows from the above that genetic methods of control can be effective only in control of invasive species that have not spread widely yet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abro, G.H., Syed, T.S., Kalhoro, A.N., Sheikh, G.H., Awan, M.S., Jessr, R.D., and Shelton, A.M., Insecticides for control of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae) in Pakistan and factors that affect their toxicity, Crop Prot., 2013, vol. 52, pp. 91–96.

    Article  CAS  Google Scholar 

  2. Adati, T., Susila, W., Sumiartha, K., Sudiarta, P., Toriumi, W., Kawazu, K., and Koji, S., Effects of mixed cropping on population densities and parasitism rates of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), Appl. Entomol. Zool., 2011, vol. 46, pp. 247–253. https://doi.org/10.1007/s13355-011-0036-z

    Article  Google Scholar 

  3. Ant, T., Koukidou, M., Rempoulakis, P., Gong, H.-F., Economopoulos, A., Vontas, J., and Alphey, L., Control of the olive fruit fly using genetics-enhanced sterile insect technique, BMC Biol., 2012, vol. 10. 51. https://doi.org/10.1186/1741-7007-10-51

  4. Avicenna, The Canon of Medicine, 1025.

  5. Baeshen, R., Ekechukwu, N.E., Toure, M., Paton, D., Coulibaly, M., Traore, S.F., and Tripet, F., Differential effects of inbreeding and selection on male reproductive phenotypes associated with the colonization and laboratory maintenance of anopheles gambiae, Malar. J., 2014, vol. 13, p. 19. https://doi.org/10.1186/1475-2875-13-19

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bhatt, S., Gething, P.W., Brady, O.J., Messina, J., Farlow, A.W., Moyes, C.L., Drake, J.M., Brownstein, J.S., Hoen, A.G., Sankoh, O., Myers, M.F., George, D.B., Jaenisch, T., Wint, G.R.W., Simmons, C.P., Scott, T.W., Farrar, J.J., and Hay, S.I., The global distribution and burden of dengue, Nature, 2013, vol. 496, no. 7446, pp. 504–507. https://doi.org/10.1038/nature12060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carvalho, D.O., Nimmo, D., Naish, N., McKemey, A.R., Gray, P., Wilke, A.B., Marrelli, M.T., Virginio, J.F., Alphey, L., and Capurro, M.L., Mass production of genetically modified Aedes aegypti for field releases in Brazil, J. Vis. Exp., 2014, vol. 83. e3579.https://doi.org/10.3791/3579

  8. Carvalho, D.O., McKemey, A.R., Garziera, L., Lacroix, R., Donnelly, C.A., Alphey, L., Malavasi, A., and Capurro, M.L., Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes, PLoS Neglected Trop. Dis., 2015, vol. 9, p. 7. e0003864. https://doi.org/10.1371/journal.pntd.0003864

    Article  CAS  Google Scholar 

  9. Craig, G.B., Jr., Hickey, N.A., and Van de Hey, R.C., An inherited male producing factor in Aedes aegypti, Science, 1960, vol. 132, pp. 1887–1889.

    Article  Google Scholar 

  10. Dively, G.P., Huang, F., Oyediran, I., Burd, T., and Morsello, S., Evaluation of gene flow in structured and seed blend refuge systems of non-Bt and Bt corn, J. Pest Sci., 2020, vol. 93, pp. 439–447.https://doi.org/10.1007/s10340-019-01126-4

    Article  Google Scholar 

  11. Dye, C., Models for the population dynamics of the yellow fever mosquito, Aedes aegypti, J. Anim. Ecol., 1984, vol. 53, pp. 247–268.

    Article  Google Scholar 

  12. EPA-HQ-OPP-2019-0274-0353 (Experimental Use Permit Issued for 93167-EUP-2 to Allow for Releases of OX5034 Aedes aegypti in Florida and Texas Insurance Letter), 2020. https://beta.regulations.gov/document/ EPA-HQ-OPP-2019-0274-0353. Accessed January 28, 2021.

  13. Evans, B.R., Kotsakiozi, P., Costa-da-Silva, A.L., Ioshino, R.S., Garziera, L., Pedrosa, M.C., Malavasi, A., Virginio, J.F., Capurro, M.L., and Powell, J.R., Transgenic Aedes aegypti mosquitoes transfer genes into a natural population, Sci. Rep., 2019, vol. 9: 13047. https://doi.org/10.1038/s41598-019-49660-6

  14. Georghiou, G.P., The magnitude of the resistance problem, in Pesticide Resistance: Strategies and Tactics for Management, Washington, DC: Natl. Acad. Press, 1986, pp. 14–43.

    Google Scholar 

  15. Goodhue, D., Deadly fly larvae infest federally endangered Key deer population, more than 40 are euthanized. 2016. https://www.flkeysnews.com/news/local/article105665836.html. Accessed October 5, 2020.

  16. Graziera, L., Pedrosa, M.C., Almeida de Souza, F., Gomez, M., Moreira, M.B., Verginio, J.F., Capurro, M.L., and Carvalho, D.O., Effect of interruption of over-flooding releases of trans genic mosquitoes over wild population of Aedes aegypti: two case studies in Brazil, Entomol. Exp. Appl., 2017, vol. 164, pp. 327–339. https://doi.org/10.1111/eea.12618

    Article  Google Scholar 

  17. Harris, A., Nimmo, D., McKemey, A., Kelly, N., Scaife, S., Donnelly, C.A., Beech, C., Petrie, W.D., and Alphey, L., Field performance of engineered male mosquitoes, Nat. Biotechnol., 2011, vol. 29, pp. 1034–1037. https://doi.org/10.1038/nbt.2019

    Article  CAS  PubMed  Google Scholar 

  18. Harris, A.F., McKemey, A.R., Nimmo, D., Curtis, Z., Black, I., Morgan, S.A., Oviedo, M.N., Lacroix, R., Naish, N., Morrison, N.I., Collado, A., Stevenson, J., Scaife, S., Dafa’alla, T., Fu, G., et al., Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes, Nat. Biotechnol., 2012, vol. 30, pp. 828–830. https://doi.org/10.1038/nbt.2350

    Article  CAS  PubMed  Google Scholar 

  19. Harvey-Samuel, T., Morrison, N.I., Walker, A.S., Marubbi, T., Yao, J., Collins, H.L., Gorman, K., Davies, T.G.E., Alphey, N., Warner, S., Shelton, A.M., and Alphey, L., Pest control and resistance management through release of insects carrying a male-selecting transgene, BMC Biol., 2015, vol. 13. 49. https://doi.org/10.1186/s12915-015-0161-1

  20. Klassen, W. and Curtis, C.F., History of the sterile insect technique, in Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management, Dyke, V.A., Hendrichs, J., and Robinson, A.S., Eds., Dordrecht: Springer, 2005, pp. 4–36.

    Book  Google Scholar 

  21. Makhrov, A.A., Karabanov, D.P., and Koduhova, Yu.V., Genetic methods for the control of alien species, Russ. J. Biol. Invasions, 2014, vol. 5, pp. 194–202.

    Article  Google Scholar 

  22. Maslyakov, V.Yu. and Izhevskii, S.S., Invazii rastitel’noyadnykh nasekomykh v evropeiskuyu chast’ Rossii (Invasions of Herbivorous Insects in the European Part of Russia), Moscow: IGRAN, 2011.

  23. McInnis, D.O., Lance, D.R., and Jackson, C.G., Behavioral resistance to the sterile insect technique by Mediterranean fruit fly (Diptera: Tephritidae) in Hawaii, Ann. Entomol. Soc. Am., 1996, vol. 89, pp. 739–744.

    Article  Google Scholar 

  24. Mo, J., Baker, G., Keller, M., and Roush, R., Local dispersal of the diamondback moth Plutella xylostella (L.) (Lepidoptera: Plutellidae), Environ. Entomol., 2003, vol. 9, pp. 212–230. https://doi.org/10.1111/eva.12280

    Article  CAS  Google Scholar 

  25. OXITEC. Our Technology, 2020. https://www.oxitec.com/ en/our-technology. Accessed January 28, 2021.

  26. Phuc, H.K., Andreasen, M.H., Burton, R.S., Vass, C., Epton, M.J., Pape, G., Fu, G., Condon, K.C., Scaife, S., Donnelly, C.A., Coleman, P.G., White-Cooper, H., and Alphey, L., Late-acting dominant lethal genetic systems and mosquito control, BMC Biol., 2007, vol. 5, p. 11.

    Article  Google Scholar 

  27. Release of GM mosquitoes OK’d, Science, 2020, vol. 369, p. 1037.

  28. Rogers, D. and Randolph, S., From a case study to a theoretical basis for tsetse control, Insect Sci. Appl., 1984, vol. 5, pp. 419–423.

    Google Scholar 

  29. Rostoks, N., Grantiņa-Ieviņa, L., Ieviņa, B., Evelone, V., Valciņa, O., and Aleksejeva, I., Genetically modified seeds and plant propagating material in Europe: potential routes of entrance and current status, Heliyon, 2019, 5: e01242. https://doi.org/10.1016/j.heliyon.2019.e01242

  30. Rubin, G.M. and Spradling, A.C., Genetic transformation of Drosophila with transposable element vectors, Science, 1982, vol. 218, pp. 348–353.

  31. Serebrovskii, A.S., A new possible method to control harmful insects, Zool. Zh., 1940, vol. 19, no. 4, pp. 618–630.

    Google Scholar 

  32. Servick, K., Brazil will release billions of lab-grown mosquitoes to combat infectious disease. Will it work? 2016. https://www.sciencemag.org/news/2016/10/brazil-will-release-billions-lab-grown-mosquitoes-combat-infectious-disease-will-it. Accessed January 28, 2021.

  33. Shelly, T.E., McInnis, D.O., Rodd, C., Edu, J., and Pahio, E., Sterile insect technique and Mediterranean fruit fly (Diptera: Tephritidae): assessing the utility of aromatherapy in a Hawaiian coffee field, J. Econ. Entomol., 2007, vol. 100, pp. 273–282.

    Article  Google Scholar 

  34. Shelton, A.M., Long, S.J., Walker, A.S., Bolton, M., Collins, H.L., Revuelta, L., Johnson, L.M., and Morrison, N.I., First field release of a genetically engineered, self-limiting agricultural pest insect: evaluating its potential for future crop protection, Front. Bioeng. Biotechnol., 2020, vol. 7. 482. https://doi.org/10.3389/fbioe.2019.00482

  35. Strunnikov, V.A., Prospects for the use of balanced sex-linked letals to control harmful insects, Genetika, 1978, vol. 14, no. 11, pp. 2002–2011.

    Google Scholar 

  36. Tabashnik, B.E., Mota-Sanchez, D., Whalonq, M.E., Hollingworth, R.M., and Carrière, Y., Defining terms for proactive management of resistance to Bt crops and pesticides, J. Econ. Entomol., 2014, vol. 107, no. 2, pp. 496–507.

    Article  Google Scholar 

  37. Talekar, N.S. and Shelton, A.M., Biology, ecology, and management of the diamondback moth, Ann. Rev. Entomol., 1993, vol. 38, pp. 275–301.

    Article  Google Scholar 

  38. Thomas, D.D., Donnelly, C.A., Wood, R.J., and Alphey, L.S., Insect population control using a dominant, repressible, lethal genetic system, Science, 2000, vol. 287, pp. 2474–2476.

    Article  CAS  Google Scholar 

  39. Viktorov, A.G., Can efficient insecticidal plants be created or the evolution of phytophage resistance to commercial transgenic Bt-plants, Russ. J. Plant Physiol., 2015, vol. 62, pp. 14–22.

    Article  CAS  Google Scholar 

  40. Vreysen, M.J.B., Monitoring sterile and wild insects in area-wide integrated pest management programmes, in Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management, Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds., Springer, 2005, pp. 325–361.

    Google Scholar 

  41. Wood, R.J., Cook, L.M., Hamilton, A., and Whitelaw, A., Transporting the marker gene re (red eye) into a laboratory cage population of Aedes aegypti (Diptera: Culicidae), using meiotic drive at the MD locus, J. Med. Entomol., 1977, vol. 14, pp. 461–464.

    Article  CAS  Google Scholar 

  42. Zapiola, M.L. and Mallory-Smith, C.A., Pollen-mediated gene flow from transgenic perennial creeping bentgrass and hybridization at the landscape level, PLoS One, 2017, vol. 12, no. 3. e0173308. https://doi.org/10.1371/journal.pone.0173308

  43. Zervas, G.A. and Economopoulos, A.P., Mating frequency in caged populations of wild and artificially reared (normal or gamma-sterilized) olive fruit flies, Dacus oleae (Gmelin) (Diptera: Tepritidae), Environ. Entomol., 1982, vol. 11, pp. 17–20.

    Article  Google Scholar 

Download references

Funding

The research was carried out within the framework of the state assignment on the topic AAAA-A18-118042490053-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Viktorov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by L. Solovyova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viktorov, A.G. Genetic Methods of Insect Control: History and Current State. Russ J Biol Invasions 12, 167–175 (2021). https://doi.org/10.1134/S2075111721020119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075111721020119

Keywords:

Navigation