Skip to main content
Log in

Analysis of erythropoietin glycoform produced by recombinant CHO cells using the Lectin-blotting technique

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The glycosylation pattern of Erythropoietin (EPO), produced by recombinant CHO cells, was studied using the simple and rapid technique of ‘Lectin-blotting’. In this experiment we used three different kinds of lectins, MAA (Maackia amurensis agglutinine), RCA (Ricinus communis agglutinine), and DSA (Datura stramonium agglutinine), which bind to the terminal sialic acid, galactose, and the N-acetyllactosamine chain respectively. The lectin-blotting technique was used to analyze the carbohydrate structure of EPO produced in the presence of two physiologically active chemical compounds, ammonium and chloroquine. The effect of the ammonium ion on the glycosylation of EPO was studied because it accumulated in the medium mainly as a by-product of glutamine metabolism. Ammonium chloride significantly inhibited the sialylation of the terminal galactose residue at concentrations of 8 mM or more. Chloroquine, a potent inhibitor of glycosylation, inhibited terminal sialylation at concentrations of 100 and 200 μM, and at a concentration of 300 μM also inhibited N-acetyllactosamine chain synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goochee, C. F. and T. Monica (1990) Environmental effects on protein glycosylation.Biol/Technol 8:421–427.

    Article  CAS  Google Scholar 

  2. Goochee, C. F., M.J. Gramer, D. C. Andersen, J.B. Bahr, and J. R. Rasmussen (1991) The oligosaccharides of glycoproteins: bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties.Bio/Technol. 9: 1347–1355.

    Article  CAS  Google Scholar 

  3. Borys, M., D. I. H. Linzer, and E. T. Papoutsakis (1994) Ammoium affects the glycosylation patterns of recombinant mouse placental lactogen-I by Chinese hamster ovary cells in a pH-dependent manner.Biotechnol. Bioeng. 43: 505–514.

    Article  CAS  Google Scholar 

  4. Jacobs, K., C. Shoemaker, R. Rundersdorf, S. Neill, R. J. Kaufman, A. Mufson, J. Seehra, S. S. Jones, R. Hewick, E. F. Fritsch, M. Kawakita, T. Shimizu, and T. Miyake (1985) Isolation and characterization of genomic and cDNA clones of human erythropoietin.Nature 313: 806–810.

    Article  CAS  Google Scholar 

  5. Lin, F. K., S. Suggs, C. H. Lin, J. K. Browne, R. Smalling, J. C. Egrie, K. K. Chen, G. M. Fox, F. Martin, Z. Stabinsky, S. M. Badrawi, P. Lai, and E. Goldwasser (1985) Cloning and expression of the human erythropoietin gene.Proc. Natl. Acad. Sci. USA. 82: 7580–7584.

    Article  CAS  Google Scholar 

  6. Lai, P., R. Everett, F. F. Wang, T. Arakawa and E. Goldwasser (1986) Structural characterization of human erythropoietin.J. Biol. Chem. 261: 3116–3121.

    CAS  Google Scholar 

  7. Yamaguchi, K., K. Akai, G. Kawanish, M. Ueda, S. Masuda, and R. Sasaki (1991) Effects of site-directed removal of N-glycosylation sites in human erythropoietin on its production and biological properties.J. Biol. Chem. 266: 20434–20439.

    CAS  Google Scholar 

  8. Wojchowski, D. M., S. H. Orkin, and A. J. Systkowski (1987) Active human erythropoietin expressed in insect cells using a baculovirus vector: a role for N-linked oligosaccharide.Biochem. Biophys. Acta. 910: 224–232.

    CAS  Google Scholar 

  9. Takeuchi, M., N. Inoue, T. W. Strickland, M. Kubota, M. Wada, R. Shimizu, S. Hoshi, H. Kozutsumi, S. Takasaki, and A. Kobata (1989) Relationship between sugar chain structure and biological activity of recombinant human erythropoietin produced in Chinese hamster ovary cells.Proc. Natl. Acad. Sci. USA. 86: 7819–7822.

    Article  CAS  Google Scholar 

  10. Tsuda, E., G. Kawanishi, M. Ueda, S. Masuda, and R. Sasaki (1990) The role of carbohydrate in recombinant human erythropoietin.Eur. J. Biochem. 188: 405–411.

    Article  CAS  Google Scholar 

  11. Laemmeli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227: 680–658.

    Article  Google Scholar 

  12. Higuchi, M., M. Oh-eda, H. Kuboniwa, K. Tomonoh, Y. Shimonaka, and N. Ochi (1992) Role of sugar chains in the expression of the biological activity of human erythropoietin.J. Biol. Chem. 267: 7703–7709.

    CAS  Google Scholar 

  13. Haselbeck, A., E. Schickaneder, H. Eltz, and W. Hosel (1990) Structural characterization of glycoprotein carbohydrate chain by using Digoxigenin-labeled lectins on blots.Anal. Biochem. 191: 25–30.

    Article  CAS  Google Scholar 

  14. Haselbeck, A. and W. Hosel (1993) ‘Immunological detection of glycoproteins on blots base on labeling with Digoxigenin’, in Hounsell, E. F. (eds.)Glycoprotein analysis in biomedicine, Humana press inc., New Jersey, USA, pp. 161–173.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Hoe Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, K.H., Kim, K.S. & Kim, J.H. Analysis of erythropoietin glycoform produced by recombinant CHO cells using the Lectin-blotting technique. Biotechnol. Bioprocess Eng. 3, 40–43 (1998). https://doi.org/10.1007/BF02932482

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932482

Key words

Navigation