Skip to main content
Log in

Some characteristics of cytochromec-555 isolated from sulfide oxidizingXanthomonas sp. DY44

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

From a heterotrophic bacterium,Xanthomonas sp. DY44 which was previously reported to oxidize hydrogen sulfide (H2S) to polysulfide, cytochromec-555 (cyt.c-555) responsible for oxidation of sulfide was purified by DEAE-Toyopearl and Sepadex G-75 column chromatography. Cyt.c-555 with a molecular weight of 12,500 showed maximum absorption at 555 nm (α-peak), 522 nm (β-peak) and 417 nm (γ-peak) for the reduced form which was prepared by addition of Na2S2O4. Cyt.c-555 was also reduced by addition of sulfide (Na2S and H2S), and the oxidized products of sulfide by cyt.c-555 was identified as polysulfide. The reduced form of cyt.c-555 was suggested to be oxidized coupled with cyt.c oxidase which is tolerant to sulfide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sublette, K. L. and J. T. Syverster (1987) Oxidation of hydrogen sulfide byThiobacillus denitrificans: desulfurization of natural gas.Biotechnol. Bioeng. 29: 249–257.

    Article  CAS  Google Scholar 

  2. Rodrigues-Leiva, M. and H. Tribusch (1988) Morphology of bacterial leaching patterns byThiobacillus ferrooxidans on synthetic pyrite.Arch. Microbiol. 149: 401–405.

    Article  Google Scholar 

  3. Cho, K. S., M. Hirai, and M. Shoda (1991) Removal characteristics of hydrogen sulfide and methanethiol byThiobacillus sp. isolated from peat in biological deodorization.J. Ferment. Bioeng. 71: 44–49.

    Article  CAS  Google Scholar 

  4. Cho, K. S., M. Hirai, and M. Shoda (1991) Degradation characteristics of hydrogen sulfide, methanethiol, dimethyl sulfide and dimethyl disulfide byThiobacillus thioparus DW44 isolated from peat biofilter.J. Ferment. Bioeng. 71: 384–389.

    Article  CAS  Google Scholar 

  5. Larkin, J. M. (1980) Isolation ofThiotrix in pure culture and observation of a filamentous epiphyte onThiotrix, Curr. Microbiol. 4: 144–158.

    Article  Google Scholar 

  6. Nelson, D. C. and H. W. Jannasch (1983) Chemoautotrophic growth of a marineBeggiatoa in sulfide-gradient cultures.Arch. Microbiol. 136: 262–269.

    Article  CAS  Google Scholar 

  7. Cannon, G. C., W. R. Strohl, J. M. Larkin, and J. M. Shively (1979) Cytochromes inBeggiatoa alba, Curr. Microbiol. 2: 263–266.

    Article  CAS  Google Scholar 

  8. Suylen, G. M. H., G. C. Stefess, and J. G. Kuenen (1986) Chemolithotrophic potential of aHyphomicrobium species, capable of growth on methylated sulphur compounds.Arch. Microbiol. 146: 192–198.

    Article  CAS  Google Scholar 

  9. Kusai, K. and T. Yamanaka (1973) Cytochromec (553, Chlorobiumthiosulfatophilium) is a sulphide-cytochromec reductase.FEMS Lett. 34: 235–237.

    CAS  Google Scholar 

  10. Steinmetz, M. A. and U. Fisher (1981) Cytochromes of the non-thiosulfate utilizing green sulfur bacteriumChlorobium limicola, Arch. Microbiol. 130: 31–37.

    Article  CAS  Google Scholar 

  11. Fukumori, Y. and T. Yamanaka (1979) Flavocytochromec of Chromatiumvinosum, some enzymatic properties and subunit structure.J. Biochem. 85: 1405–1414.

    CAS  Google Scholar 

  12. Hansen, T. A. and H. van Gemerden (1972) Sulfide utilization by purple nonsulfur bacteria.Arch. Microbiol. 86: 49–56.

    CAS  Google Scholar 

  13. Then, J. and H. G. Truper (1983) Sulfide oxidation inEctothiorhodospira abdelmalekii Evidence for the catalytic role of cytochromec-551.Arch. Microbiol. 135: 254–258.

    Article  CAS  Google Scholar 

  14. Oren, A. and E. Paden (1978) Induction of anaerobic photoautotrophic growth in the cyanobacteriumOscillatoria limnetica.J. Bacteriol. 133: 558–563.

    CAS  Google Scholar 

  15. Cho, K. S., I. Kuniyoshi, M. Hirai, and M. Shoda (1991) A newly isolated heterotrophic bacterium,Xanthomonas sp. DY44, to oxidize hydrogen sulfide to polysulfide.Biotechnol. Lett. 13: 923–928.

    Article  CAS  Google Scholar 

  16. Cho, K. S., M. Hirai, and M. Shoda (1992) Degradation of hydrogen sulfide byXanthomonas sp. strain isolated from peat.Appl. Environ. Microbiol. 58: 1183–1189.

    CAS  Google Scholar 

  17. Steinmetz, M. A. and U. Fisher (1982) Cytochromes of the green sulfur bacterium Chlorobiumvibrioforme f. thiosulfatophilum. Purification, characterization and sulfur metabolism.Arch. Microbiol. 131: 19–26.

    Article  CAS  Google Scholar 

  18. Knaff, D. B. and B. B. Buchanan (1975) Cytochrome b and photosynthetic sulfide bacteria.Biochim. Biophys. Acta. 376: 549–560.

    Article  CAS  Google Scholar 

  19. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227: 680–685.

    Article  CAS  Google Scholar 

  20. Bradford, M. M. (1976) A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  21. Yamanaka, T. (1986), Energy mechanisms of microorganisms, Gakkaisyuppan center, pp. 4–6, Tokyo.

  22. Cotton, F. A. and G. Wilkinson (1980), Advanced inorganic chemistry, 4th ed., p. 513, New York.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Suk Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, KS., Park, SJ. Some characteristics of cytochromec-555 isolated from sulfide oxidizingXanthomonas sp. DY44. Biotechnol. Bioprocess Eng. 2, 33–37 (1997). https://doi.org/10.1007/BF02932460

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932460

Key words

Navigation