Skip to main content
Log in

Development of high density mammalian cell culture system for the production of tissue-type plasminogen activator

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A high cell density culture system for the anchorage dependent CHO cells was developed based on the combination ofin situ removal of ammonium ion and microcarrier culture system, and semi-fed-batch feeding of glucose and glutamine was employed to the developed culture system. The glass bead was selected as an optimum microcarrier in terms of cell growth. An ammonium ion selective zeolite, Phillipsite-Gismondine, was packed in a dialysis membrane and equipped on the agitator of spinner reactor forin situ removal of ammonium ion. The semi-fed-batch operation was employed to the novel culture system for the high density cell culture, and the results showed the cell growth was improved by 32% and tPA productivity by 250%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rijken, D. C., M. Hoylaerts, and D. Collen (1982) Fibrinolytic properties of one-chain and two-chain human extrinsic (tissue-type) plasminogen activator.J. Biol. Chem. 257: 2920–2925.

    CAS  Google Scholar 

  2. Hoylaerts, M., D. C. Rijken, H. R. Lijnen, and D. Collen (1982) Kinetics of the activation of plasminogen by human tissue plasminogen activator.J. Biol. Chem. 257: 2912–2919.

    CAS  Google Scholar 

  3. Nieuwenhuizen, W., J. H. Verheijen, A. Vermond, and C. T. G. Chang (1983) Plasminogen activation by tissue activator is accelerated in the presence of fibrinogen cyanogen bromide fragment FCB-2.Biochem. Biophys. Acta 755: 531–533.

    CAS  Google Scholar 

  4. Ranby, M. (1982) Studies on the kinetics of plasminogen activation by tissue plasminogen activator.Biochem. Biophys. Acta 704: 461–469.

    CAS  Google Scholar 

  5. Eagle, H. (1955) The specific amino acid requirements of a mammalian cell in tissue culture.J. Biol. Chem. 114: 839–858.

    Google Scholar 

  6. Telling, R. C., and P. J. Radlett (1970) Large-scale cultivation of mammalian cells.Adv. Appl. Microbiol. 13: 91–119.

    Article  Google Scholar 

  7. Batt, B. C. and D. S. Kompala (1989) A structured kinetic modeling framework for the dynamics of hybridoma growth and monoclonal antibody production in continuous suspension culture.Biotechnol. Bioeng. 34: 515–531.

    Article  CAS  Google Scholar 

  8. Butler, M., and R. E. Spier (1984) The effects of glutamine utilization and ammonia production on the growth of BHK cells in microcarrier cultures.J. Biotechnol. 1: 187–196.

    Article  CAS  Google Scholar 

  9. Zielke, H. R., C. L. Zielke, and P. T. Ozand (1984) Glutamine a major energy source for cultured mammalian cells.Fed. Proc. 43: 121–125.

    CAS  Google Scholar 

  10. Raivio, K. O., and J. E. Seegmiller (1973) Role of glutamine in purine synthesis and in guanine nucleotide formation in normal fibroblasts and in fibroblasts deficient in hypoxanthine phosphoribosyl-transferase activity.Biochem. Biophys. Acta 299: 283–292.

    CAS  Google Scholar 

  11. Glacken, M. W. (1988) Catabolic control of mammalian cell culture.Bio/Technology 6: 1041–1050.

    Article  CAS  Google Scholar 

  12. Ryan, W. L., and C. Cardin (1966) Amino acids and ammonia of fetal calf serum during storage.Proc. Soc. Exp. Biol. Med. 123: 27–30.

    CAS  Google Scholar 

  13. Visek, W. J., G. M. Kolodny, and P. R. Gross (1972) Ammonia effects in cultures of normal and transformed 3T3 cells.J. Cell Physiol. 80: 373–382.

    Article  CAS  Google Scholar 

  14. Reuveny, S., D. Velez, J. D. Macmillan, and L. Miller (1986) Factors affecting cell growth and monoclonal antibody in stirred reactors.J. Immunol. Meth. 86: 53–59.

    Article  CAS  Google Scholar 

  15. Glacken, M. W., R. J. Fleischaker, and A. J. Sinskey (1986) Reduction of waste product excretion via nutrient control: possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells.Biotechnol. Bioeng. 28: 1376–1389.

    Article  CAS  Google Scholar 

  16. Miller, W. M., C. R. Wilke, and H. W. Blanch (1988) Transient responses of hybridoma cells to lactate and ammonia pulse and step changes in continuous culture.Bioproc. Eng. 3: 113–122.

    Article  CAS  Google Scholar 

  17. Jensen, E. M., and O. C. Liu (1961) Studies of inhibitory effects of ammonium ions in several virus-tissue culture systems.Proc. Soc. Exp. Biol. Med. 107: 834–838.

    CAS  Google Scholar 

  18. Eaton, M. D., and A. R. Scala (1962) Inhibitory effect of glutamine and ammonia on replication of influenza virus in ascites tumor cells.Virology 13: 300–307.

    Article  Google Scholar 

  19. Furusawa, E., and W. Cutting (1962) Inhibitory effect of ammonia sulfate on Columbian SK virus propagation in mouse ascites tumor cellsin vitro.Proc. Soc. Exp. Biol. Med. 111: 71–75.

    CAS  Google Scholar 

  20. Glacken, M. W., R. J. Fleischaker, and A. J. Sinskey (1986) Reduction of waste product excretion via nutrient control: possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells.Biotechnol. Bioeng. 28: 1376–1389.

    Article  CAS  Google Scholar 

  21. Griffiths, J. B. (1973) The effects of adapting human diploid cells to grow in glutamic acid media on cell morphology, growth and metabolism.J. Cell. Sci. 12: 617–629.

    CAS  Google Scholar 

  22. Hosoi, S., H. Mioh, C. Anzai, S. Sato, and N. Fujiyoshi (1988) Establishment of Namalva cell lines which grow continuously in glutamine-free medium.Cytotechnology 1: 151–158.

    Article  Google Scholar 

  23. Hassell, T. E., I. C. Allen, A. J. Rowley, and M. Butler (1987) The use of glutamine-free media for the growth of three cell lines in microcarrier culture, pp. 245–263 In: R. E. Spier and J. B. Griffiths (eds.)Modern Approaches to Animal Cell Technology, Butterworths, London.

    Google Scholar 

  24. Bebbington, C. R., G. Renner, S. Thomson, D. King, D. Abrams, and G. T. Yarranton (1992) High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker.Bio/Technology 10: 169–175.

    Article  CAS  Google Scholar 

  25. Schumpp, B., and E. J. Schlaeger (1992) Growth study of lactate and ammonia double-resistant clones of HL-60 cells. pp. 183–185. In: R. E. Spier, J. B. Griffiths, and J. B. Macdonalds (eds.)Animal cell technology: Developments, process & products, Butteworth-Heinemann, Oxford, UK.

    Google Scholar 

  26. Iio M., A. Moriyama, and H. Murakami (1985) Effects on cell proliferation of metabolites produced by cultured cells and their removal from culture in defined media pp. 437–442. In: H. Murakami, I. Yamane, D. W. Barnes, J. P. Mather, I. Hayashi, and G. H. Sato (eds.)Growth and Differentiation of Cells in Defined Environment. Springer-Verlag, Berlin.

    Google Scholar 

  27. Jeong, Y. H. and S. S. Wang (1992)In situ removal of ammonium ions from hybridoma cell culture media: selection of adsorbent.Biotechnol. Tech. 6: 341–346.

    Article  CAS  Google Scholar 

  28. Jeong, Y. H., H. I. Lee, G. T. Chun, I. H. Kim, and S. S. Wang (1996) Ammonium ion effects and its in situ removal by using immobilized adsorbent in hybridoma cell cultureKon.J. Biotechnol. Bioeng. 11: 329–339.

    Google Scholar 

  29. Kim, I. H., Y. H. Jeong, G. T. Chun, and S. S. Wang (1997) Increase of hybridoma cell density and monoclonal antibody productivity by in situ removal of ammonium ion with immobilized adsorbent beads. In: K. Funatsuet al. (eds.)Animal Cell Technology: Basic & Applied Aspects 8: 237–247.

  30. Park, B. G., Y. W. Min, G. T. Chun, I. H. Kim, and Y. H. Jeong (1998) Development of an immobilized adsorbent for in situ removal of ammonium ion from mammalian cell culture media and its application to a mammalian cell bioreactor: Development of immobilized adsorbent system.Korean J. Biotechnol. Bioeng. 13: 404–410.

    Google Scholar 

  31. Park, B. G., H. I. Rhee, G. T. Chun, I. H. Kim, and Y. H. Jeong (1998) Development of an immobilized adsorbent for in situ removal of ammonium ion from mammalian cell culture media and its application to a mammalian cell bioreactor: Application to cell culture system.Korean J. Biotechnol. Bioeng. 13: 411–417.

    Google Scholar 

  32. Matsumura, M. and F. R. P. Nayve (1995) Effect of amhybridoma cells.Cytotechnology 18: 35–50.

    Article  CAS  Google Scholar 

  33. Chang, Y. H. D., A. J. Grodzinsky, and D. I. C. Wang (1995)In-situ removal of ammonium and lactate through electrical means for hybridoma cultures.Biotechnol. Bioeng. 47: 308–318.

    Article  CAS  Google Scholar 

  34. Ozturk, S. S., M. E. Meyerhoff, and B. O. Palsson (1989) Measurement of ammonia and glutamine in cell culture media by gas sensing electrodes.Biotechnol. Tech. 3: 217–222.

    Article  CAS  Google Scholar 

  35. Zaoui, D., B. L. Fevre, H. Magdelenat, and J. G. Bieth (1984) A simple spectrophotometric assay of plasminogen activator: comparison with the fibrinolytic method.Chil. Chem. Acta 141: 101–109.

    Article  CAS  Google Scholar 

  36. McQueen A., and J. E. Bailey (1990) Growth inhibition of hybridoma cells by ammonium ion: correlation with effects on intracellular pH.Bioproc. Eng. 6: 49–61.

    Article  Google Scholar 

  37. Ryll, T., U. Valley, and R. Wagner (1994) Biochemistry of growth inhibition by ammonium ions in mamalian cells.Biotechnol. Bioeng. 44: 184–193.

    Article  CAS  Google Scholar 

  38. Jeong, Y. H., and S. S. Wang (1995) Role of glutamine in hybridoma cell culture: Effect on cell growth, antibody production and cell metabolism.Enzyme Microb. Technol. 17: 47–55.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeon-Ho Jeong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, BG., Chun, JM., Lee, CJ. et al. Development of high density mammalian cell culture system for the production of tissue-type plasminogen activator. Biotechnol. Bioprocess Eng. 5, 123–129 (2000). https://doi.org/10.1007/BF02931883

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931883

Keywords

Navigation